Skip to main content
Log in

Reptation and diffusive modes of motion of linear macromolecules

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that the model of underlying stochastic motion of a macromolecule leads to two modes of motion: reptative and isotropically diffusive. There is a length of a macromolecule M* ≈ 10M e , where M e is “the macro-molecule length between adjacent entanglements,” above which macromolecules of a melt can be regarded as obstacles to motion of each other, and the macromolecules reptate. The transition to the reptation mode of motion is determined by both topological restrictions and local anisotropy of motion. The investigation confirm that the reptation motion determines the M −2 molecular-weight dependence of the self-diffusion coefficient of macromolecules in melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. de Gennes, J. Chem. Phys. 55, 572 (1971).

    Article  ADS  Google Scholar 

  2. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford Univ. Press, Oxford, 1986).

    Google Scholar 

  3. T. P. Lodge, N. A. Rotstein, and S. Prager, Adv. Chem. Phys. 79, 1 (1990).

    Article  Google Scholar 

  4. V. G. Rostiashvili, M. Rehkopf, and T. A. Vilgis, J. Chem. Phys. 110, 639 (1999).

    Article  ADS  Google Scholar 

  5. V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics (Academic, Dordrecht, 2000).

    Google Scholar 

  6. Yu. A. Altukhov, V. N. Pokrovskii, and G. V. Pyshnograi, J. Non-Newtonian Fluid Mech. 121, 73 (2004).

    Article  MATH  Google Scholar 

  7. V. N. Pokrovskii, Physica A (Amsterdam) 366, 88 (2006).

    ADS  Google Scholar 

  8. A. Baumgärter and M. Muthukumar, Adv. Chem. Phys. 94, 625 (1996).

    Article  Google Scholar 

  9. U. Ebert, A. Baumgärtner, and L. Schäfer, Phys. Rev. E 53, 950 (1996).

    Article  ADS  Google Scholar 

  10. G. Migliorini, V. G. Rostiashvili, and T. A. Vilgis, Eur. Phys. J. B 33, 61 (2003).

    Article  ADS  Google Scholar 

  11. A. Milchev, V. G. Rostiashvili, and T. A. Vilgis, Europhys. Lett. 66, 384 (2004).

    Article  ADS  Google Scholar 

  12. B. Dünweg, in Proceedings of the NATO Advanced Study Institute/Euroconference on Computer Simulations of Surfaces and Interfaces, Albena, Bulgaria, 2002, Ed. by B. Dünweg, D. P. Landau, and A. Milchev (Academic, Dordrecht, 2003), p. 77.

    Google Scholar 

  13. S.-Q. Wang, J. Polym. Sci., Part B: Polym. Phys. 41, 1589 (2003).

    Article  Google Scholar 

  14. A. L. Kholodenko, Macromol. Theory Simul. 5, 1031 (1996).

    Article  Google Scholar 

  15. S. F. Edwards, Proc. Phys. Soc. 91, 513 (1967).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Pokrovskii.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokrovskii, V.N. Reptation and diffusive modes of motion of linear macromolecules. J. Exp. Theor. Phys. 106, 604–607 (2008). https://doi.org/10.1134/S1063776108030205

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108030205

PACS numbers

Navigation