Skip to main content
Log in

Mott-Hubbard transition and Anderson localization: A generalized dynamical mean-field theory approach

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + Σ approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamic conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985); D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).

    Article  ADS  Google Scholar 

  2. N. F. Mott, Proc. Phys. Soc., London, Sect. A 62, 416 (1949); Metal-Insulator Transitions, 2nd ed. (Taylor and Francis, London, 1990).

    Article  ADS  Google Scholar 

  3. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  4. A. M. Finkelshteĭn, Zh. Éksp. Teor. Fiz. 84(1), 168 (1983) [Sov. Phys. JETP 57 (1), 97 (1983)]; C. Castellani, C. Di Castro, P. A. Lee, and M. Ma, Phys. Rev. B: Condens. Matter 30, 527 (1984).

    Google Scholar 

  5. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

    Article  ADS  Google Scholar 

  6. D. Vollhardt, in Correlated Electron Systems, Ed. by V. J. Emery (World Sci., Singapore, 1993), p. 57.

    Google Scholar 

  7. Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187 (1995).

    Article  ADS  Google Scholar 

  8. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Ulmke, V. Janiš, and D. Vollhardt, Phys. Rev. B: Condens. Matter 51, 10411 (1995).

    Google Scholar 

  10. R. Vlaming and D. Vollhardt, Phys. Rev. B: Condens. Matter 45, 4637 (1992).

    ADS  Google Scholar 

  11. V. Dobrosavljević and G. Kotliar, Phys. Rev. Lett. 78, 3943 (1997).

    Article  ADS  Google Scholar 

  12. V. Dobrosavljević, A. A. Pastor, and B. K. Nikolić, Europhys. Lett. 62, 76 (2003).

    Article  ADS  Google Scholar 

  13. K. Byczuk, W. Hofstetter, and D. Vollhardt, Phys. Rev. Lett. 94, 056404 (2005).

    Google Scholar 

  14. D. Vollhardt and P. Wölfle, Phys. Rev. B: Condens. Matter 22, 4666 (1980); Phys. Rev. Lett. 48, 699 (1982).

    ADS  Google Scholar 

  15. P. Wölfle and D. Vollhardt, in Anderson Localization, Vol. 39: Springer Series in Solid State Physics, Ed. by Y. Nagaoka and H. Fukuyama (Springer-Verlag, Berlin, 1982), p. 26.

    Google Scholar 

  16. A. V. Myasnikov and M. V. Sadovskii, Fiz. Tverd. Tela (Leningrad) 24(12), 3569 (1982) [Sov. Phys. Solid State 24 (12), 2033 (1982)]; E. A. Kotov and M. V. Sadovskii, Z. Phys. B: Condens. Matter 51, 17 (1983).

    Google Scholar 

  17. M. V. Sadovskii, in Soviet Scientific Reviews: Physics Reviews, Ed. by I. M. Khalatnikov (Academic, New York, 1986), Vol. 7, p. 1.

    Google Scholar 

  18. D. Vollhardt and P. Wölfle, in Electronic Phase Transitions, Ed. by W. Hanke and Yu. V. Kopaev (North-Holland, Amsterdam, 1992), p. 1.

    Google Scholar 

  19. M. V. Sadovskii, Diagrammatics (World Sci., Singapore, 2006).

    MATH  Google Scholar 

  20. É. Z. Kuchinskii, M. V. Sadovskii, V. G. Suvorov, and M. A. Érkabaev, Zh. Éksp. Teor. Fiz. 107(6), 2027 (1995) [JETP 80 (6), 1122 (1995)]; É. Z. Kuchinskii and M. A. Érkabaev, Fiz. Tverd. Tela (St. Petersburg) 39 (3), 412 (1997) [Phys. Solid State 39 (3), 357 (1997)].

    Google Scholar 

  21. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Pis’ma Zh. Éksp. Teor. Fiz. 82(4), 217 (2005) [JETP Lett. 82 (4), 198 (2005)].

    Google Scholar 

  22. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, et al., Phys. Rev. B: Condens. Matter 72, 155105 (2005).

    Google Scholar 

  23. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Fiz. Nizk. Temp. (Kharkov) 32(4), 528 (2006) [Low Temp. Phys. 32 (4), 398 (2006)].

    Google Scholar 

  24. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B: Condens. Matter 75, 115102 (2007).

    Google Scholar 

  25. K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975); H. R. Krishna-Murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B: Condens. Matter 21, 1003 (1980); Phys. Rev. B: Condens. Matter 21, 1044 (1980); A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).

    Article  ADS  Google Scholar 

  26. R. Bulla, A. C. Hewson and Th. Pruschke, J. Phys.: Condens. Matter 10, 8365 (1998).

    Article  ADS  Google Scholar 

  27. R. Bulla, Phys. Rev. Lett. 83, 136 (1999); R. Bulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B: Condens. Matter 64, 045103 (2001).

    Article  ADS  Google Scholar 

  28. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Interscience, New York, 1967).

    Google Scholar 

  29. N. Blümer, Mott-Hubbard Metal-Insulator Transition and Optical Conductivity (Shaker, München, 2002).

    Google Scholar 

  30. M. A. Erkabaev and M. V. Sadovskii, J. Moscow Phys. Soc. 2, 233 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Sadovskii.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuchinskii, E.Z., Nekrasov, I.A. & Sadovskii, M.V. Mott-Hubbard transition and Anderson localization: A generalized dynamical mean-field theory approach. J. Exp. Theor. Phys. 106, 581–596 (2008). https://doi.org/10.1134/S1063776108030187

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108030187

PACS numbers

Navigation