Skip to main content
Log in

Optical properties of doped graphene layers

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The reflectance of a graphene monolayer, as well as of a system of monolayers, is calculated in the infrared range. A quantum expression for the conductivity in the collisionless regime that depends on the frequency, the temperature, and the concentration of carriers is used in the calculations. Above the threshold of the interband electron absorption, the reflectance decreases with increasing frequency. With decreasing temperature, excitation of plasmons in the system of layers is possible in a narrow range near the threshold, which results in the occurrence of a deep and sharp minimum in the frequency dependence of the reflectance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science (Washington) 306, 666 (2004); Nature (London) 438, 197 (2005).

    Article  ADS  Google Scholar 

  2. Y. Zhang, J. P. Small, M. E. S. Amory, and P. Kim, Phys. Rev. Lett. 94, 176803 (2005); Nature (London) 438, 201 (2005).

    Google Scholar 

  3. K. S. Novoselov, E. McCann, S. V. Morozov, et al., Nat. Phys. 2, 177 (2006).

    Article  Google Scholar 

  4. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Google Scholar 

  5. E. Fradkin, Phys. Rev. B: Condens. Matter 33, 3263 (1986).

    ADS  Google Scholar 

  6. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    Article  MATH  ADS  Google Scholar 

  7. J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958).

    Article  ADS  Google Scholar 

  8. J. W. MacClure, Phys. Rev. 104, 666 (1956).

    Article  ADS  Google Scholar 

  9. E. G. Mishchenko, Phys. Rev. Lett. 98, 216801 (2007).

    Google Scholar 

  10. A. A. Abrikosov and S. D. Beneslavskiĭ, Zh. Éskp. Teor. Fiz. 59, 1280 (1970) [Sov. Phys. JETP 32, 699 (1970)].

    Google Scholar 

  11. S. Das Sarma, E. H. Hwang, and Wang-Kong Tse, Phys. Rev. B: Condens. Matter 75, 121406 (2007).

    Google Scholar 

  12. H. Suzuura and T. Ando, Phys. Rev. Lett. 89, 266603 (2002).

    Google Scholar 

  13. D. V. Khveshchenko, Phys. Rev. Lett. 97, 036802 (2006).

    Google Scholar 

  14. P. A. Lee, Phys. Rev. Lett. 71, 1887 (1993).

    Article  ADS  Google Scholar 

  15. A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein, Phys. Rev. B: Condens. Matter 50, 7526 (1994).

    ADS  Google Scholar 

  16. J. Tworzydlo, B. Trauzettel, V. Titov, et al., Phys. Rev. Lett. 96, 246802 (2006).

    Google Scholar 

  17. K. Ziegler, Phys. Rev. B: Condens. Matter 75, 233407 (2007).

    Google Scholar 

  18. J. Cserti, Phys. Rev. B: Condens. Matter 75, 033405 (2007).

    Google Scholar 

  19. V. V. Cheianov, V. I. Falko, B. L. Altshuler, and I. L. Aleiner, cond-mat/07050886.

  20. N. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006).

    Google Scholar 

  21. K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 98, 076602 (2007).

    Google Scholar 

  22. N. M. R. Peres, F. Guinea, and A. Y. Castro Neto, Phys. Rev. B: Condens. Matter 73, 125411 (2006); J. Nilsson, A. Y. Castro Neto, F. Guinea, and N. M. R. Peres, Phys. Rev. Lett. 97, 266801 (2006).

    Google Scholar 

  23. Y.-W. Tan, Y. Zhang, K. Bolotin, et al., cond-mat/0707.1807.

  24. L. A. Falkovsky and A. A. Varlamov, cond-mat/0606800; Eur. Phys. J. B 56, 281 (2007).

    Article  ADS  Google Scholar 

  25. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Phys. Rev. B: Condens. Matter 75, 165407 (2007); cond-mat/0607727; Phys. Rev. Lett. 96, 256802 (2006).

    Google Scholar 

  26. E. H. Hwang and S. Das Sarma, Phys. Rev. B: Condens. Matter 75, 205418 (2007).

    Google Scholar 

  27. S. A. Mikhailov and K. Ziger, Phys. Rev. Lett. 99, 016803 (2007).

    Google Scholar 

  28. G. W. Hanson, cond-mat/0701205.

  29. D. S. L. Abergel, A. Russell, and V. I. Fal’ko, cond-mat/0705.0091.

  30. L. A. Falkovsky and E. G. Mishchenko, Zh. Éksp. Teor. Fiz. 129(4), 751 (2006) [JETP 102 (4), 661 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Falkovsky.

Additional information

Original Russian Text © L.A. Falkovsky, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 133, No. 3, pp. 663–669.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falkovsky, L.A. Optical properties of doped graphene layers. J. Exp. Theor. Phys. 106, 575–580 (2008). https://doi.org/10.1134/S1063776108030175

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108030175

PACS numbers

Navigation