Skip to main content
Log in

Effect of isotopic composition and microstructure on the crystalline and magnetic phase states in R0.5Sr0.5MnO3

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The results of structural neutron experiments on determining crystal and magnetic phase states of perovskite-like manganites R0.5Sr0.5MnO3 (R = 152Sm, Nd0.772Tb0.228, and Nd0.544Tb0.456) are reported. Experiments are carried out for revealing microscopic factors responsible for the giant oxygen isotope effect that was discovered recently in Sm1−x Sr x MnO3 for x ≈ 0.5. It is shown that separation into two crystal phases P 1 and P 2 with the same spatial symmetry but different types of Jahn-Teller distortions in MnO6 octahedra and magnetic ordering of Mn atoms takes place in all studied compounds at low temperatures. Structural analysis has been carried out successfully owing to exceptionally large differences in the unit cell parameters of the coexisting phases. The P 1 phase is ferromagnetic and MnO6 octahedra are distorted only slightly. The P 2 phase is antiferromagnetic (A-type ordering) and MnO6 octahedra are strongly compressed in the apical direction. The relative volumes occupied by the P 1 and P 2 phases depend on the mean radius of the A cation, and the replacement of 16O by 18O results in their redistribution in favor of the P 2 phase. The results unambiguously point to the percolation nature of the metal-insulator transition in a Sm-containing compound upon isotopic substitution of oxygen due to a sharp decrease (from 65 to 13%) in the fraction of ferromagnetic phase P 1. In all investigated compounds, the ordered magnetic moment of manganese Mn in the P 1 and P 2 phases varies from 1.7μB to 3.5μB. The data on the evolution of the miscrostructure parameters during a phase transition to the stratified state indicate that the initial spread in the A cation radii, as well as the internal microstrains, produce a critical effect on the formation of mesoscopic phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Zhao, K. Conder, H. Keller, and K. A. Muller, Nature 381, 676 (1996).

    Article  ADS  Google Scholar 

  2. G. M. Zhao, H. Keller, J. Hofer, et al., Solid State Commun. 104, 57 (1997).

    Article  ADS  Google Scholar 

  3. N. A. Babushkina, L. M. Belova, O. Yu. Gorbenko, et al., Nature 391, 159 (1998).

    Article  ADS  Google Scholar 

  4. L. P. Gor’kov and V. Z. Kresin, Phys. Rep. 400, 149 (2004).

    Article  ADS  Google Scholar 

  5. M. R. Ibarra, G. M. Zhao, J. M. De Teresa, et al., Phys. Rev. B 57, 7446 (1998).

    Article  ADS  Google Scholar 

  6. A. M. Balagurov, V. Yu. Pomjakushin, D. V. Sheptyakov, et al., Phys. Rev. B 60, 383 (1999).

    Article  ADS  Google Scholar 

  7. A. M. Balagurov, V. Yu. Pomjakushin, D. V. Sheptyakov, et al., Phys. Rev. B 64, 024420 (2001).

    Google Scholar 

  8. V. Yu. Pomjakushin, D. V. Sheptyakov, K. Conder, et al., Phys. Rev. B 75, 054410 (2007).

  9. N. A. Babushkina, A. N. Taldenkov, L. M. Belova, et al., Phys. Rev. B 62, R6081 (2000).

    Article  ADS  Google Scholar 

  10. M. Uehara, S. Mori, C. H. Chen, and S.-W. Cheong, Nature 399, 560 (1999).

    Article  ADS  Google Scholar 

  11. M. Tokunaga, Y. Tokunaga, and T. Tamegai, Phys. Rev. Lett. 93, 037203 (2004).

    Google Scholar 

  12. L. P. Gor’kov and V. Z. Kresin, Pis’ma Zh. Éksp. Teor. Fiz. 67, 934 (1998) [JETP Lett. 67, 985 (1998)].

    Google Scholar 

  13. D. Khomskii, Physica B (Amsterdam) 280, 325 (2000).

    ADS  Google Scholar 

  14. É. L. Nagaev, Usp. Fiz. Nauk 165, 529 (1995) [Phys. Usp. 38, 497 (1995)].

    Google Scholar 

  15. M. Yu. Kagan and K. I. Kugel’, Usp. Fiz. Nauk 171, 577 (2001) [Phys. Usp. 44, 553 (2001)].

    Google Scholar 

  16. J. Burgy, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 92, 097202 (2004).

    Google Scholar 

  17. K. H. Ahn, T. Lookman, and A. R. Bishop, Nature 428, 401 (2004).

    Article  ADS  Google Scholar 

  18. P. Littlewood, Nature 399, 529 (1999).

    Article  ADS  Google Scholar 

  19. N. A. Babushkina, E. A. Chistotina, O. Yu. Gorbenko, et al., Phys. Rev. B 67, 100410(R) (2003).

  20. N. A. Babushkina, E. A. Chistotina, I. A. Bobrikov, et al., J. Phys.: Condens. Matter 17, 1975 (2005).

    Article  ADS  Google Scholar 

  21. A. I. Kurbakov, A. V. Lazuta, V. A. Ryzhov, et al., Phys. Rev. B 72, 184432 (2005).

    Google Scholar 

  22. G. Zheng and C. H. Patterson, Phys. Rev. B 67, 220404R (2003).

  23. A. N. Styka, Y. Ren, O. Yu. Gorbenko, et al., J. Appl. Phys. 100, 103520 (2006).

  24. N. A. Babushkina, E. A. Chistotina, O. Yu. Gorbenko, et al., Fiz. Tverd. Tela (St. Petersburg) 46, 1821 (2004) [Phys. Solid State 46, 1884 (2004)].

    Google Scholar 

  25. A. M. Balagurov, I. A. Bobrikov, V. Yu. Pomyakushin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 82, 672 (2005) [JETP Lett. 82, 594 (2005)].

    Google Scholar 

  26. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  ADS  Google Scholar 

  27. V. B. Zlokazov and V. V. Chernyshev, J. Appl. Crystallogr. 25, 447 (1992).

    Article  Google Scholar 

  28. T. Roisnel and J. Rodriguez-Carvajal, Mater. Sci. Forum 378–381, 118 (2001).

    Article  Google Scholar 

  29. A. M. Balagurov, V. Yu. Pomjakushin, D. V. Sheptyakov, et al., Eur. Phys. J. B 19, 215 (2001).

    Article  ADS  Google Scholar 

  30. http://www.ill.fr/dif/soft/fp.

  31. P. G. Radaelli, D. E. Cox, M. Marezio, and S.-W. Cheong, Phys. Rev. B 55, 3015 (1997).

    Article  ADS  Google Scholar 

  32. Q. Huang, J. W. Lynn, R. W. Erwin, et al., Phys. Rev. B 61, 8895 (2000).

    Article  ADS  Google Scholar 

  33. O. Chmaissem, B. Dabrowski, S. Kolesnik, et al., Phys. Rev. B 67, 094431 (2003).

  34. C. Yaicle, F. Fauth, C. Martin, et al., Solid State Chem. 178, 1652 (2005).

    Article  ADS  Google Scholar 

  35. A. Machida, Y. Moritomo, E. Nishibori, et al., Phys. Rev. B 62, 3883 (2000).

    Article  ADS  Google Scholar 

  36. T. Mizokawa and A. Fujimori, Phys. Rev. B 56, R493 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Balagurov.

Additional information

Original Russian Text © A.M. Balagurov, I.A. Bobrikov, V.Yu. Pomjakushin, D.V. Sheptyakov, N.A. Babushkina, O.Yu. Gorbenko, M.S. Kartavtseva, A.R. Kaul, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 133, No. 3, pp. 605–621.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balagurov, A.M., Bobrikov, I.A., Pomjakushin, V.Y. et al. Effect of isotopic composition and microstructure on the crystalline and magnetic phase states in R0.5Sr0.5MnO3 . J. Exp. Theor. Phys. 106, 528–541 (2008). https://doi.org/10.1134/S1063776108030126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108030126

PACS numbers

Navigation