Skip to main content
Log in

Generation of mid-IR radiation in near-IR semiconductor lasers based on low-dimensional heterostructures

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A method for generating mid-IR radiation (λ ∼ 10μm) in near-IR (λ ∼1 μm) quantum-well semiconductor heterolasers has been proposed. This method is based on the formation of population inversion at a mid-IR intersubband transition as a result of the depletion of its lower level by a strong near-IR field. In contrast to the previous investigations of this problem, the inhomogeneous broadening of the noted transition (caused by the dependence of its frequency on the carrier energy) is taken into account, and it is proposed to invert it not in the entire spectral range but only in the region resonant with the mid-IR field. This approach makes it possible to significantly reduce (in comparison with the previous estimates) the threshold pump current density for initiating mid-IR generation and, as a result, hope to implement operation of the proposed laser at room temperature in the cw mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Zimdars, J. A. Valdmanis, J. S. White, et al., AIP Conf. Proc. 760, 570 (2005).

    Article  ADS  Google Scholar 

  2. O. V. Betskiĭ, A. P. Krenitskiĭ, A. V. Maĭborodin, et al., Biomed. Tekhnol. Radioélektron. 12, 3 (2003).

    Google Scholar 

  3. A. A. Kovalev, Biomed. Tekhnol. Radioélektron. 11, 21 (2006).

    Google Scholar 

  4. V. F. Kirchuk, O. N. Antipova, A. N. Ivanov, et al., Biomed. Tekhnol. Radioélektron. 12, 46 (2006).

    Google Scholar 

  5. M. V. Korolevich and M. R. Zhbankova, Zh. Prikl. Spektrosk. 73, 721 (2006).

    Google Scholar 

  6. A. Agrawal, H. Cao, and A. Nahata, New J. Phys. 7, 249 (2005).

    Article  ADS  Google Scholar 

  7. J. N. Heyman, R. Kersting, and K. Unterrainer, Appl. Phys. Lett. 72, 644 (1998).

    Article  ADS  Google Scholar 

  8. B. H. Wu and J. C. Cao, Physica B (Amsterdam) 349, 322 (2004).

    ADS  Google Scholar 

  9. A. V. Maslov and D. S. Citrin, J. Appl. Phys. 93, 10131 (2003).

    Article  ADS  Google Scholar 

  10. J. Faist, F. Capasso, D. L. Sivco, et al., Science (Washington) 264, 553 (1994).

    Article  ADS  Google Scholar 

  11. S. Dhillon, J. Alton, S. Barbieri, et al., Appl. Phys. Lett. 87, 071107 (2005).

  12. A. A. Belyanin, F. Capasso, V. V. Kocharovsky, et al., Phys. Rev. A: At., Mol., Opt. Phys. 63, 053803 (2001).

    Google Scholar 

  13. A. Belyanin, C. Bentley, F. Capasso, et al., Phys. Rev. A: At., Mol., Opt. Phys. 64, 013814 (2001).

    Google Scholar 

  14. A. Kastalsky, IEEE J. Quantum Electron. 29, 1112 (1993).

    Article  ADS  Google Scholar 

  15. J. Singh, IEEE Photonics Technol. Lett. 8, 488 (1996).

    Article  ADS  Google Scholar 

  16. L. E. Vorob’ev, Pis’ma Zh. Éksp. Teor. Fiz. 68(5), 392 (1998) [JETP Lett. 68 (5), 417 (1998)].

    ADS  Google Scholar 

  17. V. Berger and C. Sirtori, Semicond. Sci. Technol. 19, 964 (2004).

    Article  ADS  Google Scholar 

  18. L. A. Vaĭnshteĭn, Electromagnetic Waves (Radio i Svyaz’ Moscow, 1988) [in Russian].

  19. Ya. I. Khanin, Principles of Laser Dynamics (Elsevier, Amsterdam, 1995; Fizmatlit, Moscow, 1999).

    Google Scholar 

  20. S.-C. Lee, I. Galbraith, and C. R. Pidgeon, Phys. Rev. B: Condens. Matter 52, 1874 (1995).

    ADS  Google Scholar 

  21. M. Hartig, J. D. Ganiere, P. E. Selbmann, et al., Phys. Rev. B: Condens. Matter 60, 1500 (1999).

    ADS  Google Scholar 

  22. O. Svelto, Principles of Lasers (Plenum, New York, 1982; Mir, Moscow, 1990).

    Google Scholar 

  23. Y. Tokuda, N. Tsukada, K. Fujiwara, et al., Appl. Phys. Lett. 49, 1629 (1986).

    Article  ADS  Google Scholar 

  24. A. N. Pikhtin and A. D. Yas’kov, Fiz. Tekh. Poluprovodn. (Leningrad) 12(6), 1047 (1978) [Sov. Phys. Semicond. 12 (6), 622 (1978)].

    Google Scholar 

  25. C. Sirtori, C. Gmachl, F. Capasso, et al., Opt. Lett. 23, 1366 (1998).

    ADS  Google Scholar 

  26. Semiconductor Lasers, Ed. by E. Kapon (Academic, San Diego, 1999).

    Google Scholar 

  27. G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).

    Google Scholar 

  28. U. Ekenberg, Phys. Rev. B: Condens. Matter 40, 7714 (1989).

    ADS  Google Scholar 

  29. B. Jensen, in Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, New York, 1985).

    Google Scholar 

  30. L. V. Asryan, N. A. Gun’ko, A. S. Polkovnikov, et al., Semicond. Sci. Technol. 15, 1131 (2000).

    Article  ADS  Google Scholar 

  31. M. Hartig, J. D. Ganiere, P. E. Selbmann, and B. Deveaud, Phys. Rev. B: Condens. Matter 60, 1500 (1999).

    ADS  Google Scholar 

  32. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kukushkin.

Additional information

Original Russian Text © V.A. Kukushkin, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 133, No. 3, pp. 522–531.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukushkin, V.A. Generation of mid-IR radiation in near-IR semiconductor lasers based on low-dimensional heterostructures. J. Exp. Theor. Phys. 106, 450–458 (2008). https://doi.org/10.1134/S1063776108030059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108030059

PACS numbers

Navigation