Skip to main content
Log in

Coupled multiwave interactions in aperiodically poled nonlinear optical crystals

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new type of coupled nonlinear optical interactions that can be implemented in crystals with an aperiodic modulation of the nonlinear susceptibility is studied. The quasi-phase matching condition is satisfied simultaneously for several conventional three-frequency processes involved in the interaction due to the aperiodic variation of the nonlinearity in space. A simple method for designing aperiodically poled nonlinear optical crystals is proposed and analyzed. The method is based on the superposition of nonlinearity modulations produced by several periodic functions simultaneously so that each of these functions individually corresponds to its own quasi-phase-matched nonlinear process. The dynamics of energy exchange during interaction of five waves with different frequencies that involves three coupled three-frequency parametric interaction processes is investigated thoroughly. The ratio between the effective nonlinear wave coupling coefficients and the amplitudes of pump waves is determined for the case in which the initial stage of the interaction is characterized by the parametric instability. It is demonstrated that the secondary simplification of the coupled differential equations with spatially modulated nonlinear coefficients, which leads to the system of equations with constant nonlinear coefficients, correctly describes the dynamics of interaction of the waves at distances of the order of 50 characteristic nonlinear lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Akhmanov and R. V. Khokhlov, Problems of Nonlinear Optics (VINITI, Moscow, 1964; Gordon and Breach, New York, 1972).

    Google Scholar 

  2. V. G. Dmitriev and L. V. Tarasov, Applied Nonlinear Optics (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  3. R. L. Byer, J. Nonlinear Opt. Phys. Mater. 6, 549 (1997).

    Article  ADS  Google Scholar 

  4. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).

    Article  ADS  Google Scholar 

  5. A. S. Chirkin, V. V. Volkov, G. D. Laptev, and E. Yu. Morozov, Kvantovaya Élektron. (Moscow) 30, 847 (2000).

    Article  Google Scholar 

  6. Y. Y. Zhu and N. B. Ming, Phys. Rev. B 42, 3676 (1990).

    Article  ADS  Google Scholar 

  7. J. Feng, Y. Y. Zhu, and N. B. Ming, Phys. Rev. B 41, 5578 (1990).

    Article  ADS  Google Scholar 

  8. X. Liu, Z. Wang, J. Wu, et al., Phys. Rev. B 58, 12782 (1998).

  9. Y. B. Chen, C. Zhang, Y. Y. Zhu, et al., Appl. Phys. Lett. 78, 577 (2001).

    Article  ADS  Google Scholar 

  10. X. Liu, Z. Wang, J. Wu, et al., Phys. Rev. A 58, 4956 (1998).

    Article  ADS  Google Scholar 

  11. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, et al., Phys. Rev. Lett. 78, 2752 (1997).

    Article  ADS  Google Scholar 

  12. L. M. Zhao, B. Y. Gu, Y. S. Zhou, and F. H. Wang, J. Appl. Phys. 94, 1882 (2003).

    Article  ADS  Google Scholar 

  13. B. Y. Gu, Y. Zhang, and B. G. Dong, J. Appl. Phys. 87, 7629 (2000); Y. Zhang and B. Y. Gu, Opt. Commun. 192, 417 (2001).

    Article  ADS  Google Scholar 

  14. K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 023903-1 (2002).

    Google Scholar 

  15. H. Liu, Y. Y. Zhu, S. N. Zhu, et al., Appl. Phys. Lett. 79, 728 (2001).

    Article  ADS  Google Scholar 

  16. A. A. Novikov and A. S. Chirkin, Proc. SPIE 6604, 66041D (2007).

  17. T. [!]Kartaloĝlu, Z. G. Figen, and O. Aytür, J. Opt. Soc. Am. B 20, 343 (2003).

    Article  ADS  Google Scholar 

  18. G. K. Kitaeva, I. I. Naumova, A. A. Mikhailovsky, et al., Appl. Phys. B 66, 201 (1998).

    Article  ADS  Google Scholar 

  19. I. V. Shutov, A. A. Novikov, and A. S. Chirkin, Kvantovaya Élektron. (Moscow) 38 (in press).

  20. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).

    Google Scholar 

  21. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995; Fizmatlit, Moscow, 2000).

    Google Scholar 

  22. A. S. Chirkin and M. Yu. Saigin, Acta Phys. Hung. B 23, 63 (2006).

    Article  Google Scholar 

  23. A. S. Chirkin and D. B. Yusupov, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 929 (1981).

    Google Scholar 

  24. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, The Optics of Femtosecond Laser Pulses (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Novikov.

Additional information

Original Russian Text © A.A. Novikov, A.S. Chirkin, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 133, No. 3, pp. 483–494.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikov, A.A., Chirkin, A.S. Coupled multiwave interactions in aperiodically poled nonlinear optical crystals. J. Exp. Theor. Phys. 106, 415–425 (2008). https://doi.org/10.1134/S1063776108030011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108030011

PACS numbers

Navigation