Skip to main content
Log in

One-dimensional photonic crystals with a planar oriented nematic layer: Temperature and angular dependence of the spectra of defect modes

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Transmission spectra of a one-dimensional photonic crystal (PC) formed by two multilayer dielectric mirrors and a planar oriented layer of 5CB nematic liquid crystal (LC) that is sandwiched between these mirrors and serves as a structure defect are investigated experimentally. Specific features of the behavior of the spectrum of defect modes as a function of the angle of incidence of light on the crystal are studied for two polarizations: parallel and perpendicular to the director of the LC; the director either lies in the plane of incidence or is perpendicular to it. It is shown that, for the configurations considered, the maxima of the defect modes shift toward the short-wavelength region as the tilt angle of incidence radiation increases; this tendency is more manifest for the parallel-polarized component, when the director lies in the plane of incidence. In the latter case, the width of the photonic band gap (PBG) appreciably decreases. The temperature dependence of the polarization components of the transmission spectra of a PC is investigated in the case of normal incidence of light. The spectral shift of defect modes due to the variation of the refractive index of the LC at the nematic-isotropic liquid phase transition point is measured. It is shown that, in real PCs, the amplitude of defect modes decreases when approaching the center of the band gap, as well as when the number of layers in the dielectric mirrors increases. Theoretical transmission spectra of the PCs calculated by the method of recurrence relations with regard to the decay of defect modes are in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, N.J., 1995).

    MATH  Google Scholar 

  2. Photonic Crystals: Advances in Design, Fabrication, and Characterization, Ed. by K. Busch, R. B. Wehrspohn, S. Lölkes, and H. Föll (Wiley, Berlin, 2004).

    Google Scholar 

  3. V. F. Shabanov, S. Ya. Vetrov, and A. V. Shabanov, Optics of Real Photonic Crystals. Mesomorphic Defects, Irregularities (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  4. V. P. Bykov, Zh. Éksp. Teor. Fiz. 62, 505 (1972) [Sov. Phys. JETP 35, 269 (1972)].

    Google Scholar 

  5. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, Amsterdam, 2003; Fizmatlit, Moscow, 2005).

    Google Scholar 

  6. A. M. Zheltikov, Usp. Fiz. Nauk 170, 1203 (2000) [Phys. Usp. 43, 1125 (2000)].

    Article  Google Scholar 

  7. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

  8. J. Vu kovic, M. Lončr, H. Mabuchi, et al., Phys. Rev. E 65, 016608 (2001).

  9. Y. Akahane, T. Asano, B. S. Song, et al., Nature 425, 944 (2003).

    Article  ADS  Google Scholar 

  10. O. Painter, R. Lee, A. Yariv, et al., Science 284, 1819 (1999).

    Article  Google Scholar 

  11. B. M. Shi, Z. Jiang, X. F. Zhou, et al., J. Appl. Phys. 91,6769 (2002).

    Article  ADS  Google Scholar 

  12. M. G. Martem’yanov, T. V. Dolgova, and A. A. Fedyanin, Zh. Éksp. Teor. Fiz. 125, 527 (2004) [JETP 98, 463 (2004)].

    Google Scholar 

  13. M. Soljačič and J. D. Joannopoloulos, Nature Mater. 3, 211 (2004).

    Article  ADS  Google Scholar 

  14. F. Wang, S. N. Zhu, K. F. Li, et al., Appl. Phys. Lett. 88, 071102 (2006).

    Article  ADS  Google Scholar 

  15. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1969; Nauka, Moscow, 1970).

    Google Scholar 

  16. T. N. Krylova, Interference Covers (Mashinostroenie, Leningrad, 1973) [in Russian].

    Google Scholar 

  17. M. F. Weber, C. A. Stover, L. R. Gilbert, et al., Science 287, 2451 (2000).

    Article  ADS  Google Scholar 

  18. Y. Fink, J. N. Winn, S. Chen, et al., Science 282, 1679 (1998).

    Article  ADS  Google Scholar 

  19. A. Mandatory, C. Sibilia, M. Bertolotti, et al., J. Opt. Soc. Am. B 22, 1785 (2005).

    Article  ADS  Google Scholar 

  20. G. Liang, P. Han, and H. Wang, Opt. Lett. 29, 192 (2004).

    Article  ADS  Google Scholar 

  21. J. P. Dowling, M. Scalora, M. J. Bloemer, and Ch. M. Bowden, J. Appl. Phys. 75, 1896 (1994).

    Article  ADS  Google Scholar 

  22. N. Mattiucci, G. D’Aguanno, M. J. Bloemer, et al., Phys. Rev. E 72, 066612 (2005).

    Google Scholar 

  23. Z. S. Yang, N. H. Kwong, R. Binder, et al., J. Opt. Soc. Am. B 22, 2144 (2002).

    Article  ADS  Google Scholar 

  24. L. M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals (Nauka, Moscow, 1978; Wiley, New York, 1983).

    Google Scholar 

  25. H. Kitzerow, Liq. Cryst. Today 11, 3 (2002).

    Google Scholar 

  26. S. Ya. Vetrov and A. V. Shabanov, Zh. Éksp. Teor. Fiz. 101, 1341 (1992) [Sov. Phys. JETP 74, 719 (1992)].

    Google Scholar 

  27. K. Busch and S. John, Phys. Rev. Lett. 83, 967 (1999).

    Article  ADS  Google Scholar 

  28. K. Yoshino, Y. Shimoda, Y. Kawagishi, et al., Appl. Phys. Lett. 75, 932 (1999).

    Article  ADS  Google Scholar 

  29. S. W. Leonard, J. P. Mondia, H. M. van Dreal, et al., Phys. Rev. B 61, R2389 (2001).

  30. Ch. Schuller, F. Klopf, J. P. Reithmaier, et al., Appl. Phys. Lett. 82, 2767 (2003).

    Article  ADS  Google Scholar 

  31. B. Wild, R. Ferrini, R. Houdre, et al., Appl. Phys. Lett. 84, 846 (2004).

    Article  ADS  Google Scholar 

  32. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, Jpn. J. Appl. Phys. 41, L1482 (2002).

    Article  ADS  Google Scholar 

  33. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, Electron. Commun. Jpn., Part 2: Electron. 87, 24 (2004).

    Article  Google Scholar 

  34. R. Ozaki, T. Matsui, M. Ozaki, et al., Appl. Phys. Lett. 82, 3593 (2003).

    Article  ADS  Google Scholar 

  35. B. Maune, J. Witzens, Th. Baehr-Jones, et al., Opt. Express 13, 4699 (2005)

    Article  ADS  Google Scholar 

  36. S. Ya. Vetrov and A. V. Shabanov, Zh. Éksp. Teor. Fiz. 120, 1126 (2001) [JETP 93, 977 (2001)].

    Google Scholar 

  37. E. Kosmidou, E. E. Kriezis, and Th. D. Tsiboukis, IEEE Quantum Electron. 41, 657 (2005).

    Article  ADS  Google Scholar 

  38. Y.-R. Ha, Y.-C. Kim, and H. Y. Park, Appl. Phys. Lett. 79,15 (2001).

    Article  ADS  Google Scholar 

  39. M. Haurylau, S. P. Andersen, K. L. Marshall, et al., Appl. Phys. Lett. 88, 061103 (2006).

    Article  ADS  Google Scholar 

  40. S. M. Weiss, M. Haurylau, and Ph. M. Fauchet, Opt. Mater. 27, 740 (2005).

    Article  ADS  Google Scholar 

  41. G. Mertens, Th. Roder, H. Mattias, et al., Appl. Phys. Lett. 15, 3036 (2003).

    Article  ADS  Google Scholar 

  42. S. M. Weiss, H. Ouyang, J. Zhang, et al., Opt. Express 13, 1090 (2005).

    Article  ADS  Google Scholar 

  43. S. M. Weiss and Ph. M. Fauchet, Phys. Status Solidi A 197, 556 (2003).

    Article  ADS  Google Scholar 

  44. T. T. Larsen, A. Bjarklen, D. S. Hermann, et al., Opt. Express 11, 2589 (2003).

    Article  ADS  Google Scholar 

  45. Ch. Schuller, J. P. Reithmaier, J. Zimmermann, et al., Appl. Phys. Lett. 87, 121105 (2005).

    Article  ADS  Google Scholar 

  46. G. Alagappan, X. W. Sun, P. Shum, et al., J. Opt. Soc. Am. B 23, 159 (2006).

    Article  ADS  Google Scholar 

  47. R. Ferrini, J. Marz, L. Zuppiroli, et al., Opt. Lett. 31, 1238 (2006).

    Article  ADS  Google Scholar 

  48. V. A. Gunyakov, V. P. Gerasimov, S. A. Myslivets, et al., Pis’ma Zh. Tekh. Fiz. 32(11), 76 (2006) [Tech. Phys. Lett. 32, 951 (2006)].

    Google Scholar 

  49. S. A. Myslivets, V. A. Gunyakov, V. P. Gerasimov, et al., Dokl. Akad. Nauk 413, 36 (2007) [Dokl. Phys. 52, 134 (2007)].

    Google Scholar 

  50. H. Högström and C. G. Ribbing, Opt. Commun. 271,148 (2007).

    Article  ADS  Google Scholar 

  51. S. Ya. Vetrov, A. V. Shabanov, and E. V. Shustitskiĭ, Opt. Spektrosk. 100, 454 (2006) [Opt. Spectrosc. 100, 409 (2006)].

    Article  Google Scholar 

  52. V. A. Bushuev and A. D. Pryamikov, Kvantovaya Élektron. (Moscow) 33, 515 (2003).

    Article  Google Scholar 

  53. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, New York, 1981; Nauka, Moscow, 1985).

    Google Scholar 

  54. J. Faist, J.-D. Ganiere, Ph. Buffat, et al., J. Appl. Phys. 66, 1023 (1989).

    Article  ADS  Google Scholar 

  55. V. Ya. Zyryanov and V. Sh. Épshteĭn, Prib. Tekh. Éksp., No. 2, 164 (1987).

  56. I. H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965).

    Article  ADS  Google Scholar 

  57. D. L. Wood and K. Nassau, Appl. Opt. 21, 2978 (1982).

    Article  ADS  Google Scholar 

  58. S. A. Akhmanov and S. Yu. Nikitin, Physical Optics (Mosk. Gos. Univ., Moscow, 1998; Clarendon, Oxford, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Arkhipkin.

Additional information

Original Russian Text © V.G. Arkhipkin, V.A. Gunyakov, S.A. Myslivets, V.P. Gerasimov, V.Ya. Zyryanov, S.Ya. Vetrov, V.F. Shabanov, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 133, No. 2, pp. 447–459.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkhipkin, V.G., Gunyakov, V.A., Myslivets, S.A. et al. One-dimensional photonic crystals with a planar oriented nematic layer: Temperature and angular dependence of the spectra of defect modes. J. Exp. Theor. Phys. 106, 388–398 (2008). https://doi.org/10.1134/S1063776108020179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108020179

PACS numbers

Navigation