Skip to main content
Log in

Hamiltonian description of bubble dynamics

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of a nonspherical bubble in a liquid is described within the Hamiltonian formalism. Primary attention is focused on the introduction of the canonical variables into the computational algorithm. The expansion of the Dirichlet-Neumann operator in powers of the displacement of a bubble wall from an equilibrium position is obtained in the explicit form. The first three terms (more specifically, the second-, third-, and fourth-order terms) in the expansion of the Hamiltonian in powers of the canonical variables are determined. These terms describe the spectrum and interaction of three essentially different modes, i.e., monopole oscillations (pulsations), dipole oscillations (translational motions), and surface oscillations. The cubic nonlinearity is analyzed for the problem associated with the generation of Faraday ripples on the wall of a bubble in an acoustic field. The possibility of decay processes occurring in the course of interaction of surface oscillations for the first fifteen (experimentally observed) modes is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Feng and L. Leal, Annu. Rev. Fluid Mech. 29, 201 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  2. V. E. Zakharov, Prikl. Mekh. Tekh. Fiz., No. 2, 86 (1968).

  3. T. B. Benjamin and P. J. Olver, J. Fluid Mech. 125, 137 (1982).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. T. B. Benjamin, J. Fluid Mech. 181, 349 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. V. E. Zakharov and E. A. Kuznetsov, Usp. Fiz. Nauk 167, 1137 (1997) [Phys. Usp. 40, 1087 (1997)].

    Article  Google Scholar 

  6. V. P. Ruban and J. J. Rasmussen, Phys. Rev. E 68, 056301 (2003).

    Google Scholar 

  7. P. Smereka, B. Binir, and S. Banerjee, Phys. Fluids 30, 3342 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. P. Panayotaros, Physica D (Amsterdam) 130,273 (1999).

    MATH  MathSciNet  ADS  Google Scholar 

  9. W. Craig and C. Sulem, J. Comput. Phys. 108, 73 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. R. Coifman and Y. Meyer, in Pseudodifferential Operators and Applications (American Mathematical Society, New York, 1985), p. 71.

    Google Scholar 

  11. A. I. Dyachenko, A. O. Korotkevich, and V. E. Zaharov, Phys. Rev. Lett. 92, 124501 (2004).

    Google Scholar 

  12. P. J. Olver, Math. Proc. Cambridge Philos. Soc. 88, 71 (1970).

    Article  MathSciNet  Google Scholar 

  13. A. O. Maksimov, Akust. Zh. 48, 805 (2002) [Acoust. Phys. 48, 713 (2002)].

    Google Scholar 

  14. A. O. Maksimov, Commun. Nonlinear Sci. Numer. Simul. 9, 83 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. A. O. Maksimov, in Innovations in Nonlinear Acoustics, Ed. by A. Atchley, V. Sparrow, and R. M. Keolian (American Inst. of Physics, New York, 2006), p. 516.

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 3rd ed. (Nauka, Moscow, 1974; Pergamon, Oxford, 1977).

    Google Scholar 

  17. M. Faraday, Philos. Trans. R. Soc. London 121, 319 (1831).

    Google Scholar 

  18. T. Benjamin and M. Strasberg, J. Acoust. Soc. Am. 30, 697 (1958).

    Google Scholar 

  19. X. L. Wang, D. Attinger, and F. Moraga, Nanoscale Microscale Thermophys. Eng. 10, 379 (2006).

    Article  Google Scholar 

  20. P. Marmottant and S. Hilgenfeldt, Nature 423, 153 (2003).

    Article  ADS  Google Scholar 

  21. P. Marmottant and S. Hilgenfeldt, Proc. Natl. Acad. Sci. USA 101, 9523 (2004).

    Article  ADS  Google Scholar 

  22. A. O. Maksimov, J. Sound Vibr. 283, 915 (2005).

    Article  ADS  Google Scholar 

  23. A. O. Maksimov, T. G. Leighton, and P. A. Birkin, in Innovations in Nonlinear Acoustics, Ed. by A. Atchley, V. Sparrow, and R. M. Keolian (American Inst. of Physics, New York, 2006), p. 512.

    Google Scholar 

  24. T. G. Leighton, The Acoustic Bubble (Academic, London, 1994).

    Google Scholar 

  25. D. Hsieh, J. Acoust. Soc. Am. 56,392 (1974).

    Article  ADS  Google Scholar 

  26. A. Francescutto and R. Nabergoj, Acustica41, 215 (1978).

    Google Scholar 

  27. M. Ceshia and R. Nabergoj, Phys. Fluids 221, 140 (1978).

    Article  ADS  Google Scholar 

  28. P. Hall and G. Seminara, J. Fluid Mech. 101, 423 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Longuet-Higgins, J. Fluid Mech. 201, 543 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. J. Ffowcs-Williams and Y. Guo, J. Fluid Mech. 224, 507 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. M. Longuet-Higgins, J. Fluid Mech. 224, 531 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. C. Mei and X. Zhou, J. Fluid Mech. 229, 229 (1991).

    Article  Google Scholar 

  33. S. Yang, Z. Feng, and L. Leal, J. Fluid Mech. 247, 417 (1993).

    Article  MATH  ADS  Google Scholar 

  34. A. Maksimov, Ultrasonics 35, 79 (1997).

    Article  Google Scholar 

  35. M. Longuet-Higgins, J. Fluid Mech. 201, 525 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. A. O. Maksimov, and T. G. Leighton, Acust. Acta Acust. 87, 322 (2001).

    Google Scholar 

  37. S. Simons, Proc. Phys. Soc. London 82, 401 (1963); Proc. Phys. Soc. London 83, 749 (1964).

    Article  ADS  Google Scholar 

  38. M. Longuet-Higgins, J. Acoust. Soc. Am. 91, 531 (1991).

    MathSciNet  Google Scholar 

  39. K. Yoshida and Y. Watanabe, in Innovations in Nonlinear Acoustics, Ed. by A. Atchley, V. Sparrow, and R. M. Keolian (American Inst. of Physics, New York, 2006), p. 479.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Maksimov.

Additional information

Original Russian Text © A.O. Maksimov, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 133, No. 2, pp. 412–428.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimov, A.O. Hamiltonian description of bubble dynamics. J. Exp. Theor. Phys. 106, 355–370 (2008). https://doi.org/10.1134/S1063776108020143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108020143

PACS numbers

Navigation