Skip to main content
Log in

A nonlinear scenario for development of vortex layer instability in gravity field

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A Hamiltonian version of contour dynamics is formulated for models of constant-vorticity plane flows with interfaces. The proposed approach is used as a framework for a nonlinear scenario for instability development. Localized vortex blobs are analyzed as structural elements of a strongly perturbed wall layer of a vorticity-carrying fluid with free boundary in gravity field. Gravity and vorticity effects on the geometry and velocity of vortex structures are examined. It is shown that compactly supported nonlinear solutions (compactons) are candidates for the role of particle-like vortex structures in models of flow breakdown. An analysis of the instability mechanism demonstrates the possibility of a self-similar collapse. It is found that the vortex shape stabilizes at the final stage of the collapse, while the vortex sheet strength on its boundary increases as (t 0t)−1, where t 0 is the collapse time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Inogamov, A. Yu. Dem’yanov, and É. E. Son, Hydrodynamics of Mixing (Mosk. Fiz.-Tekh. Inst., Moscow, 1999) [in Russian].

    Google Scholar 

  2. E. Fermi, in Scientific Works (Nauka, Moscow, 1972), Vol. 2, pp. 490–498 [in Russian].

    Google Scholar 

  3. N. J. Zabusky, M. H. Hughes, and K. V. Roberts, J. Comput. Phys. 30, 96 (1979).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. D. G. Dritschel, J. Comput. Phys. 77, 240 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. V. P. Goncharov, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 65 (1986).

  6. V. P. Goncharov and V. I. Pavlov, Eur. J. Mech. B/Fluids 19, 831 (2000).

    Article  MATH  Google Scholar 

  7. V. P. Goncharov and V. I. Pavlov, Zh. Éksp. Teor. Fiz. 119, 685 (2001) [JETP 92, 594 (2001)].

    Google Scholar 

  8. V. P. Goncharov and V. I. Pavlov, in Fundamental and Applied Problems in the Vortex Theory, Ed. by A. V. Borisov, I. S. Mamaev, and M. A. Sokolovskiĭ (Inst. Komp’yut. Issled., Moscow-Izhevsk, 2003), p. 179 [in Russian].

    Google Scholar 

  9. V. P. Goncharov and V. I. Pavlov, Pis’ma Zh. Éksp. Teor. Fiz. 84, 459 (2006) [JETP Lett. 84, 384 (2006)].

    Google Scholar 

  10. P. Rosenau, Am. Math. Soc. Not. 55, 738 (2005).

    MathSciNet  Google Scholar 

  11. Y. A. Li and P. J. Olver, Discrete Contin. Dyn. Syst. 3, 419 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  12. V. E. Zakharov and E. A. Kuznetsov, Zh. Éksp. Teor. Fiz. 91, 1310 (1986) [Sov. Phys. JETP 64, 773 (1986)].

    ADS  Google Scholar 

  13. E. A. Kuznetsov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 56, 342 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Goncharov.

Additional information

Original Russian Text © V.P. Goncharov, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 132, No. 5, pp. 1222–1234.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharov, V.P. A nonlinear scenario for development of vortex layer instability in gravity field. J. Exp. Theor. Phys. 105, 1075–1084 (2007). https://doi.org/10.1134/S1063776107110192

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107110192

PACS numbers

Navigation