Skip to main content
Log in

Crystallization and melting of a system of charges in a liquid helium cluster

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A system of like (positive or negative) charges forming “snowballs” or “bubbles” in a three-dimensional liquid helium cluster is investigated. The charges are confined inside the cluster by an “image potential” produced by the polarization of liquid helium. The stability of a multiply charged helium cluster is considered. Computer simulations are used to investigate the crystallization and melting of the system of charges depending on the dimensionless parameter T* = k B TεR/e 2, where k B is the Boltzmann constant, T is the temperature, ε is the dielectric constant of liquid helium, R is the cluster radius, and e is a unit charge. Various characteristics, including symmetry groups and moments, have been found for equilibrium configurations of charges in a cluster with N = 1–100 charges. At small N ∼ 10, Thomson’s model of successive filling of “belts” of charges can be used to describe the structure of equilibrium configurations of charges. At large N, the description of the structure formed by charges using the idea of a quasi-two-dimensional “closed triangular lattice” with topological defects is more adequate. Formally, this description is valid starting from N = 4. The melting of a “lattice” of charges is described. A number of our conclusions can be generalized to clusters of other noble gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Sindzingre, M. L. Klein, and D. M. Ceperley, Phys. Rev. Lett. 63, 1601 (1989).

    Article  ADS  Google Scholar 

  2. M. V. Rama Krishna and K. B. Whaley, Phys. Rev. Lett. 64, 1126 (1990).

    Article  ADS  Google Scholar 

  3. J. W. Halley, C. E. Campbell, C. F. Giese, and K. Goetz, Phys. Rev. Lett. 71, 2429 (1993).

    Article  ADS  Google Scholar 

  4. M. Lewenstein and L. You, Phys. Rev. Lett. 71, 1339 (1993).

    Article  ADS  Google Scholar 

  5. A. P. V. van Deursen and J. Reuss, J. Chem. Phys. 63, 4559 (1975).

    Article  ADS  Google Scholar 

  6. P. W. Stephens and J. G. King, Phys. Rev. Lett. 51, 1538 (1983).

    Article  ADS  Google Scholar 

  7. J. Gspann, Z. Phys. B 98, 405 (1995).

    Article  ADS  Google Scholar 

  8. D. M. Brink and S. Stringari, Z. Phys. D 15, 257 (1990).

    Article  ADS  Google Scholar 

  9. M. Hartmann, R. E. Miller, J. P. Toennies, and A. Vilesov, Rhys. Rev. Lett. 75, 1566 (1995).

    Article  ADS  Google Scholar 

  10. H. Buchenau, J. P. Toennies, and J. A. Northby, J. Chem. Phys. 95, 8134 (1991).

    Article  ADS  Google Scholar 

  11. A. Scheidemann, J. P. Toennies, and J. A. Northby, Phys. Rev. Lett. 64, 1899 (1990).

    Article  ADS  Google Scholar 

  12. V. B. Shikin and Yu. P. Monarkha, Two-Dimensional Charged Systems in Helium (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  13. K. R. Atkins, Phys. Rev. 116, 1339 (1959).

    Article  ADS  Google Scholar 

  14. V. B. Shikin, Zh. Éksp. Teor. Fiz. 58, 1748 (1970) [Sov. Phys. JETP 31, 936 (1970)].

    Google Scholar 

  15. J. Poitrenaud and F. J. B. Williams, Phys. Rev. Lett. 29, 1230 (1972).

    Article  ADS  Google Scholar 

  16. J. Poitrenaud and F. J. B. Williams, Phys. Rev. Lett. 32, 1213 (1974).

    Article  ADS  Google Scholar 

  17. R. G. Arkhipov, Usp. Fiz. Nauk 88, 185 (1966) [Sov. Phys. Usp. 9, 174 (1966)].

    Google Scholar 

  18. R. A. Ferrel, Phys. Rev. 108, 167 (1937).

    Article  ADS  Google Scholar 

  19. G. Careri, V. Fasoli, and F. Gaeta, Nuovo Cimento 15, 774 (1960).

    Article  Google Scholar 

  20. W. F. Schmidt, E. Illenberger, A. G. Khrapak, and Y. Sakai, J. Chem. Phys. 115, 10 048 (2001).

    Article  Google Scholar 

  21. J. A. Northby, S. Kim, and T. Jiang, Physica B (Amsterdam) 197, 426 (1994).

    ADS  Google Scholar 

  22. W. Schoepe and G. W. Rayfield, Phys. Rev. A 7, 2111 (1973).

    Article  ADS  Google Scholar 

  23. F. Ancilotto and F. Toigo, Z. Phys. B 98, 309 (1995).

    Article  ADS  Google Scholar 

  24. K. F. Volykhin, A. G. Khrapak, and V. F. Shmidt, Zh. Éksp. Teor. Fiz. 108, 1642 (1995) [JETP 81, 901 (1995)].

    Google Scholar 

  25. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941; Gostekhizdat, Moscow, 1948).

    MATH  Google Scholar 

  26. Yu. E. Lozovik and E. A. Rakoch, Phys. Rev. B 57, 1214 (1998).

    Article  ADS  Google Scholar 

  27. Yu. E. Lozovik and V. A. Mandelshtam, Phys. Lett. A 145, 269 (1990); Phys. Lett. A 165, 469 (1992).

    Article  ADS  Google Scholar 

  28. A. M. Livshits and Yu. E. Lozovik, Chem. Phys. Lett. 314, 577 (1999).

    Article  ADS  Google Scholar 

  29. Lord Rayleigh, Philos. Mag. 14, 184 (1882).

    Google Scholar 

  30. A. A. Samarskiĭ and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  31. T. Erber and G. M. Hockney, J. Phys. A 24, L1369 (1991).

    Article  ADS  Google Scholar 

  32. E. L. Altshuler, T. J. Williams, E. R. Ratner, et al., Phys. Rev. Lett. 72, 2671 (1994).

    Article  ADS  Google Scholar 

  33. H. A. Munera, Nature 320, 597 (1986).

    Article  ADS  Google Scholar 

  34. L. T. Wille, Nature 324, 46 (1986).

    Article  ADS  Google Scholar 

  35. J. R. Edmundson, Acta Crystallogr. A 49, 648 (1993).

    Article  MathSciNet  Google Scholar 

  36. A. M. Livshits and Yu. E. Lozovik, Kristallografiya 47, 7 (2002) [Crystallogr. Rep. 47, 1 (2002)].

    Google Scholar 

  37. L. Bonsall and A. A. Maradudin, Phys. Rev. B 15, 1959 (1974).

    Article  ADS  Google Scholar 

  38. G. Meissner and A. Flamming, Phys. Lett. A 57, 277 (1976).

    Article  ADS  Google Scholar 

  39. Yu. E. Lozovik and V. M. Farztdinov, Preprint No. 24 (Inst. of Spectroscopy, USSR Academy of Sciences, Troitsk, 1987).

  40. V. A. Likhachev and R. Yu. Khaĭrov, Introduction to the Theory of Disclinations (Leningr. Gos. Univ., Leningrad, 1975) [in Russian].

    Google Scholar 

  41. H. W. Kroto, J. R. Heath, S. C. O’Brien, et al., Nature 318, 162 (1985).

    Article  ADS  Google Scholar 

  42. J. J. Thomson, Philos. Mag. 7, 237 (1904).

    MathSciNet  Google Scholar 

  43. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al., J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  44. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  45. D. J. Wales and R. D. Berry, Phys. Rev. Lett. 73, 2875 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Livshits.

Additional information

Original Russian Text © A.M. Livshits, Yu.E. Lozovik, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 132, No. 3, pp. 647–665.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livshits, A.M., Lozovik, Y.E. Crystallization and melting of a system of charges in a liquid helium cluster. J. Exp. Theor. Phys. 105, 571–586 (2007). https://doi.org/10.1134/S1063776107090142

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107090142

PACS numbers

Navigation