Skip to main content
Log in

Quantum dots for demonstration of additional dimensions of spacetime

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

By the example of electron mesoscopic systems, we show the impossibility of constraints of the quantum principle of superposition imposed by the superselection rule. This rule was introduced by Wick, Wightman, and Wigner in order to avoid the violation of Lorentz invariance due to the absence of physical invariance under rotations by an angle of 2π in states which are a coherent superposition of states with an even and odd number of fermions. We describe a mesoscopic system (a semiconductor double quantum dot at low temperatures) where such superpositions are realized; this is confirmed by experiments. We suggest a new experiment which explicitly demonstrates the absence of physical invariance under rotations by an angle of 2π. We note that an alternative to the superselection rule is the existence (along with x, y, z, and t) of additional spinor (Grassmann) dimensions of spacetime introduced in quantum field theory for realization of supersymmetry. It is proved that additional dimensions are real; their physical meaning is clarified for nonrelativistic systems of fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Schwarz and N. Seiberg, Rev. Mod. Phys. 71, S112 (1999).

    Article  Google Scholar 

  2. A. F. Andreev, Pis’ma Zh. Éksp. Teor. Fiz. 68, 638 (1998) [JETP Lett. 68, 673 (1998)].

    ADS  Google Scholar 

  3. A. F. Andreev, J. Supercond. 13, 805 (2000); Physica B (Amsterdam) 280, 440 (2000).

    Article  Google Scholar 

  4. G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev. 88, 101 (1952).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. A. F. Andreev, Pis’ma Zh. Éksp. Teor. Fiz. 74, 575 (2001) [JETP Lett. 74, 512 (2001)].

    Google Scholar 

  6. A. F. Andreev, Phys. Rev. B 68, 155419 (2003).

    Google Scholar 

  7. T. Hayashi, T. Fujisawa, H. D. Cheong, et al., Phys. Rev. Lett. 91, 226804 (2003).

    Google Scholar 

  8. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed. (Oxford Univ. Press, Oxford, 1958; Nauka, Moscow, 1960), p. 289.

    MATH  Google Scholar 

  9. G. Badurek, H. Rauch, and J. Summhammer, Physica B (Amsterdam) 151, 82 (1988).

    Article  Google Scholar 

  10. T. D. Lee, Particle Physics and Introduction to Field Theory (Harwood Academic, Cambridge, 1981), p. 512.

    Google Scholar 

  11. M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Phys. Rev. Lett. 69, 1997 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Andreev.

Additional information

Original Russian Text © A.F. Andreev, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 132, No. 3, pp. 607–614.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, A.F. Quantum dots for demonstration of additional dimensions of spacetime. J. Exp. Theor. Phys. 105, 535–541 (2007). https://doi.org/10.1134/S1063776107090099

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107090099

PACS numbers

Navigation