Skip to main content
Log in

The role of electron correlations in the double ionization of helium by fast protons

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the double ionization (DI) of a helium atom by fast protons and study the role of electron correlations in this process. We develop a quantum-mechanical approach that takes into account the interaction of the emitted electrons in continuum and the dynamical charge screening of the ejected particles, which depends on their ejection kinematics. The interaction of the emitted electrons between themselves and with the core is described in the model of approximate 3C functions, while the dynamical charge screening is described by introducing effective charges of the emitted electrons and the ion core, which are determined by the particle momenta. The derived closed analytical expressions for the differential ionization cross sections have been applied to the case of a coplanar particle ejection geometry at various momenta q transferred to the atom. Analysis of our calculations has shown that the developed model describes adequately the available experimental data. Including the dynamical charge screening has a significant effect on the DI cross section and improves considerably the agreement between theory and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ullrich, R. Moshammer, A. Dorn, et al., Rep. Prog. Phys. 66, 1463 (2003).

    Article  ADS  Google Scholar 

  2. J. S. Briggs and V. Schmidt, J. Phys. B: At. Mol. Opt. Phys. 33, R1 (2000).

    Article  ADS  Google Scholar 

  3. D. Fischer, R. Moshammer, A. Dorn, et al., Phys. Rev. Lett. 90, 243201 (2003).

  4. D. Fischer, M. Schulz, R. Moshammer, et al., J. Phys. B: At. Mol. Opt. Phys. 37, 1103 (2004).

    Article  ADS  Google Scholar 

  5. M. Schulz, D. Fischer, R. Moshammer, et al., J. Phys. B: At. Mol. Opt. Phys. 38, 1363 (2005).

    Article  ADS  Google Scholar 

  6. G. Garibotti and J. E. Miraglia, Phys. Rev. A 21, 572 (1980).

    Article  ADS  Google Scholar 

  7. M. Brauner, J. S. Briggs, and H. Klar, J. Phys. B: At. Mol. Opt. Phys. 22, 2265 (1989).

    Article  ADS  Google Scholar 

  8. F. Maulbetsch and J. S. Briggs, J. Phys. B: At. Mol. Opt. Phys. 26, L647 (1993).

    Article  ADS  Google Scholar 

  9. F. Maulbetsch and J. S. Briggs, J. Phys. B: At. Mol. Opt. Phys. 26, 1679 (1993).

    Article  ADS  Google Scholar 

  10. F. Maulbetsch and J. S. Briggs, J. Phys. B: At. Mol. Opt. Phys. 27, 4095 (1994).

    Article  ADS  Google Scholar 

  11. F. Maulbetsch and J. S. Briggs, J. Phys. B: At. Mol. Opt. Phys. 28, 551 (1995).

    Article  ADS  Google Scholar 

  12. F. Maulbetsch, M. Pont, J. S. Briggs, et al., J. Phys. B: At. Mol. Opt. Phys. 28, L341 (1995).

    Article  ADS  Google Scholar 

  13. M. Pont, R. Shakeshaft, F. Maulbetsch, et al., Phys. Rev. A 53, 3671 (1996).

    Article  ADS  Google Scholar 

  14. S. P. Lucey, J. Rasch, C. T. Whelan, et al., J. Phys. B: At. Mol. Opt. Phys. 31, 1237 (1998).

    Article  ADS  Google Scholar 

  15. P. Lamy, B. Joulakian, C. Dal Cappello, et al., J. Phys. B: At. Mol. Opt. Phys. 29, 2315 (1996).

    Article  ADS  Google Scholar 

  16. S. Jones and D. H. Madison, Phys. Rev. Lett. 91, 073201 (2003).

    Google Scholar 

  17. L. G. Gerchikov and S. A. Sheinerman, J. Phys. B: At. Mol. Opt. Phys. 34, 647 (2001).

    Article  ADS  Google Scholar 

  18. L. G. Gerchikov, S. A. Sheinerman, M. Schulz, et al., J. Phys. B: At. Mol. Opt. Phys. 35, 2783 (2002).

    Article  ADS  Google Scholar 

  19. J. Berakdar, Phys. Rev. A 53, 2314 (1996).

    Article  ADS  Google Scholar 

  20. S. Jones, D. H. Madison, and D. A. Konovalov, Phys. Rev. A 55, 444 (1997).

    Article  ADS  Google Scholar 

  21. J. Berakdar, J. Roder, J. S. Briggs, et al., J. Phys. B: At. Mol. Opt. Phys. 29, 6203 (1996).

    Article  ADS  Google Scholar 

  22. J. Berakdar, J. S. Briggs, I. Bray, et al., J. Phys. B: At. Mol. Opt. Phys. 32, 895 (1999).

    Article  ADS  Google Scholar 

  23. X. F. Jia, M. H. Liu, S. Y. Sun, et al., Phys. Rev. A 69, 062707 (2004).

  24. A. Messiah, Quantum Mechanics (Interscience, New York, 1961; Nauka, Moscow, 1978), Chap. 11.

    Google Scholar 

  25. S. A. Sheinerman and V. Schmidt, J. Phys. B: At. Mol. Opt. Phys. 32, 5205 (1999).

    Article  ADS  Google Scholar 

  26. M. Schulz, R. Moshammer, W. Schmitt, et al., Phys. Rev. Lett. 84, 863 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sheinerman.

Additional information

Original Russian Text © E.M. Lobanova, S.A. Sheinerman, L.G. Gerchikov, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 132, No. 3, pp. 551–560.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobanova, E.M., Sheinerman, S.A. & Gerchikov, L.G. The role of electron correlations in the double ionization of helium by fast protons. J. Exp. Theor. Phys. 105, 486–494 (2007). https://doi.org/10.1134/S1063776107090038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107090038

PACS numbers

Navigation