Skip to main content
Log in

Spin susceptibility of cuprates in the model of a 2D frustrated antiferromagnet: Role of renormalization of spin fluctuations in describing neutron experiments

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Experimental data on the spin susceptibility of HTSC cuprates are reproduced on the basis of a spherically symmetric approach in the frustrated Heisenberg model. The inclusion of real and imaginary renormalizations in spin Green’s functions makes it possible to explain the evolution of spin excitation spectrum ω(q) and susceptibility spectrum χ(q, ω) in the range from insulator to optimal doping. In the low-frustration limit corresponding to the weakly doped mode, the saddle singularity of ω(q) and scaling of χ2D(ω) =∫d q Im χ(q, ω) are reproduced and an analytic expression is derived for the scaling function. In the strong frustration (optimal doping) mode, the stripe scenario is demonstrated; this leads to a peak of χ2D (ω) in the region of ω∼60 meV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Kastner, R. J. Birgeneau, G. Shirane, et al., Rev. Mod. Phys. 70, 897 (1998).

    Article  ADS  Google Scholar 

  2. P. Bourges, in The Gap Symmetry and Fluctuationsin High Temperature Superconductors, Ed. by J. Bok, G. Deutscher, D. Pavuna, and S. A. Wolf (Plenum, New York, 1998), p. 349.

    Google Scholar 

  3. T. E. Mason, in Handbook on the Physics and Chemistry of Rare Earths: High-Temperature Superconductors-II, Ed. by J. K. A. Gschneidner, L. Eyring, and M. B. Maple (Elsevier, Amsterdam, 2001), Vol. 31, p. 281.

    Google Scholar 

  4. J. M. Tranquada, in Handbook on High-Temperature Superconductivity. Theory and Experiment, Ed. by J. R. Schrieffer (Springer, Berlin, 2007) (in press); condmat/0512115.

    Google Scholar 

  5. R. J. Birgeneau, C. Stock, J. M. Tranquada, et al., J. Phys. Soc. Jpn. 75, 111 003 (2006).

    Google Scholar 

  6. J. Lorenzana, G. Seibold, and R. Coldea, Phys. Rev. B 72, 224511 (2005).

    Google Scholar 

  7. S. M. Hayden, G. Aeppli, H. A. Mook, et al., Phys. Rev. Lett. 76, 1344 (1996).

    Article  ADS  Google Scholar 

  8. S. M. Hayden, G. Aeppli, T. G. Perring, et al., Phys. Rev. B 54, R6905 (1996).

    Article  ADS  Google Scholar 

  9. B. Keimer, R. J. Birgeneau, A. Cassanho, et al., Phys. Rev. Lett. 67, 1930 (1991); B. Keimer, N. Belk, R. J. Birgeneau, et al., Phys. Rev. B 46, 14 034 (1992).

    Article  ADS  Google Scholar 

  10. K. Kakurai, S. Shamoto, T. Kiyokura, et al., Phys. Rev. B 48, 3485 (1993).

    Article  ADS  Google Scholar 

  11. H. Hiraka, Y. Endoh, M. Fujita, et al., J. Phys. Soc. Jpn. 70, 8553 (2001).

    Article  Google Scholar 

  12. C. Stock, W. J. L. Buyers, R. Liang, et al., Phys. Rev. B 69, 014502 (2004).

  13. R. Coldea, S. M. Hayden, G. Aeppli, et al., Phys. Rev. Lett. 86, 5377 (2001).

    Article  ADS  Google Scholar 

  14. H. F. Fong, P. Bourges, Y. Sidis, et al., Phys. Rev. B 61, 14773 (2000).

  15. N. B. Christensen, D. F. McMorrow, H. M. Rønnow, et al., Phys. Rev. Lett. 93, 147002 (2004).

    Google Scholar 

  16. J. M. Tranquada, H. Woo, T. G. Perring, et al., Nature 429, 534 (2004).

    Article  ADS  Google Scholar 

  17. C. Stock, W. J. L. Buyers, R. A. Cowley, et al., Phys. Rev. B 71, 024522 (2005).

  18. S. M. Hayden, H. A. Mook, P. Dai, et al., Nature 429, 531 (2004).

    Article  ADS  Google Scholar 

  19. M. Inui, S. Doniach, and M. Gabay, Phys. Rev. B 38, 6631 (1988).

    Article  ADS  Google Scholar 

  20. J. F. Annet, R. M. Martin, A. K. McMahan, et al., Phys. Rev. B 40, 2620 (1989).

    Article  ADS  Google Scholar 

  21. P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).

    Article  ADS  Google Scholar 

  22. S. Sachdev, in Quantum Magnetism, Lecture Notes in Physics (Springer, Berlin, 2004); M. Vojta, T. Vojta, and R. K. Kaul, Phys. Rev. Lett. 97, 097001 (2006).

    Google Scholar 

  23. M. Vojta and T. Ulbricht, Phys. Rev. Lett. 93, 127002 (2004).

    Google Scholar 

  24. P. Prelovšek, I. Sega, and J. Boča, Phys. Rev. Lett. 92, 027002 (2004); I. Sega, P. Prelovšek, and J. Bonča, Phys. Rev. B 68, 054524 (2003).

    Google Scholar 

  25. I. A. Larionov, Phys. Rev. B 69, 214525 (2004); Phys. Rev. B 72, 094505 (2005).

    Google Scholar 

  26. A. Sherman, Phys. Lett. A 337, 435 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Sherman and M. Schreiber, Phys. Rev. B 65, 134520 (2002); Phys. Rev. B 68, 094519 (2003); Eur. Phys. J. B 32, 203 (2003).

  28. H. Mori, Prog. Theor. Phys. 33, 423 (1965); Prog. Theor. Phys. 34, 399 (1965).

    Article  MATH  ADS  Google Scholar 

  29. J. Igarashi, Phys. Rev. B 46, 107 063 (1992); J. Phys.: Condens. Matter 4, 10 265 (1992).

    Google Scholar 

  30. R. R. P. Singh, Phys. Rev. B 39, 9760 (1989).

    Article  ADS  Google Scholar 

  31. H. Shimahara and S. Takada, J. Phys. Soc. Jpn. 60, 2394 (1991).

    Article  ADS  Google Scholar 

  32. A. F. Barabanov and V. M. Berezovskiĭ, Zh. Éksp. Teor. Fiz. 106, 1156 (1994) [JETP 79, 627 (1994)]; J. Phys. Soc. Jpn. 63, 3974 (1994).

    Google Scholar 

  33. A. F. Barabanov, L. A. Maksimov, and A. V. Mikheenkov, in Spectroscopy of High-T c Superconductors. A Theoretical View, Ed. by N. M. Plakida (Taylor and Francis, London, 2003), p. 1.

    Google Scholar 

  34. E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).

    Article  ADS  Google Scholar 

  35. A. F. Barabanov and L. A. Maksimov, Phys. Lett. A 207, 390 (1995).

    Article  ADS  Google Scholar 

  36. Yu. A. Tserkovnikov, Teor. Mat. Fiz. 7, 250 (1971); Teor. Mat. Fiz. 49, 219 (1981).

    Google Scholar 

  37. N. N. Plakida, Phys. Lett. A 43, 481 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  38. A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42,167 (1990).

    Article  ADS  Google Scholar 

  39. A. V. Chubukov, D. Pines, and J. Schmalian, in The Physics of Superconductors, Ed. by K. H. Bennemann and J. B. Ketterson (Springer, Berlin, 2003), Vol. 1, p. 495.

    Google Scholar 

  40. Ar. Abanov and A. Chubukov, Phys. Rev. Lett. 83, 1652 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Barabanov.

Additional information

Original Russian Text © A.V. Mikheenkov, A.F. Barabanov, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 132, No. 2, pp. 392–405.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikheenkov, A.V., Barabanov, A.F. Spin susceptibility of cuprates in the model of a 2D frustrated antiferromagnet: Role of renormalization of spin fluctuations in describing neutron experiments. J. Exp. Theor. Phys. 105, 347–359 (2007). https://doi.org/10.1134/S1063776107080079

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107080079

PACS numbers

Navigation