Skip to main content
Log in

Effect of gases on the temperature dependence of the electric conductivity of CVD multiwalled carbon nanotubes

  • Nanostructures and Low-Dimensional Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The influence of various gaseous media on the temperature dependence of the electric conductivity σ of multiwalled carbon nanotubes (MWNTs) synthesized using the method of catalytical chemical vapor deposition (CVD) has been studied. The σ(T) curves were measured in a temperature range from 4.2 to 300 K in helium and its mixtures with air, methane, oxygen, and hydrogen. The introduction of various gaseous components into a helium atmosphere leads to a significant decrease in the conductivity of MWNTs in the interval between the temperatures of condensation and melting of the corresponding gas. Upon a heating-cooling cycle, the conductivity restores on the initial level. It is concluded that a decrease in σ is caused by the adsorption of gases on the surface of nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook of Nanostructured Materials and Nanotechnology, Ed. by H. S. Nalwa (Academic, San Diego, 2000), p. 3461.

    Google Scholar 

  2. R. W. Seigel, Mater. Sci. Eng. B 19, 37 (1993).

    Article  Google Scholar 

  3. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Ed. by M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer, Berlin, 2000), p. 448.

    Google Scholar 

  4. S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Berlin, 2004), p. 215.

    Google Scholar 

  5. Carbon Nanotubes: Science and Applications, Ed. by M. Meyyappan (CRC, Boca Raton, 2004), p. 304.

    Google Scholar 

  6. Carbon Nanotubes: Properties and Applications, Ed. by M. J. O’Connell (CRC, Boca Raton, 2006), p. 360.

    Google Scholar 

  7. M. Endo, in Proceedings of Conference on NanoCarbon and NanoDiamond 2006 (St. Petersburg, 2006), p. 11.

  8. A. V. Eletskiĭ, Usp. Fiz. Nauk 174, 1191 (2004) [Phys. Usp. 47, 1119 (2004)].

    Google Scholar 

  9. Carbon Nanomaterials, Ed. by Y. Gogotsi (CRC, Boca Raton, 2006), p. 344.

    Google Scholar 

  10. A. Magrez, Jin W. Seo, V. L. Kuznetsov, and L. Forro, submitted to Angew. Chem. Int. Ed. Engl.

  11. A. I. Romanenko, O. B. Anikeeva, T. I. Buryakov, et al., cond-mat/0608437; submitted to NATO Sci. Ser.

  12. A. S. Kotosonov and V. V. Atrazhev, Pis’ma Zh. Éksp. Teor. Fiz. 72, 76 (2000) [JETP Lett. 72, 53 (2000)].

    Google Scholar 

  13. A. S. Kotosonov and D. V. Shilo, Mol. Mater. 13, 113 (2000).

    Google Scholar 

  14. A. S. Kotosonov, Zh. Éksp. Teor. Fiz. 93, 1870 (1987) [Sov. Phys. JETP 66, 1068 (1987)].

    ADS  Google Scholar 

  15. A. S. Kotosonov, Carbon 26, 735 (1988).

    Article  Google Scholar 

  16. E. M. Baĭtinger, Electron Structure of Condensed Carbon (Ural. Gos. Univ., Sverdlovsk, 1989), p. 152 [in Russian].

    Google Scholar 

  17. C. V. Haesendonck, L. Stockman, R. J. M. Vullers, et al., Surf. Sci. 386, 279 (1997).

    Article  Google Scholar 

  18. A. I. Romanenko, A. V. Okotrub, V. L. Kuznetsov, et al., Usp. Fiz. Nauk 175, 1000 (2005).

    Article  Google Scholar 

  19. J. Zhao, A. Buldum, J. Han, and J. Ping Lu, Nanotechnology 13, 195 (2002).

    Article  ADS  Google Scholar 

  20. L. Valentini, C. Cantalini, I. Armentano, et al., J. Vac. Sci. Technol. B 21, 1996 (2003).

    Article  Google Scholar 

  21. A. I. Romanenko, O. B. Anikeeva, A. V. Okotrub, et al., Fiz. Tverd. Tela (St. Petersburg) 44, 634 (2002) [Phys. Solid State 44, 659 (2002)].

    Google Scholar 

  22. J.-P. Issi, L. Langer, J. Heremans, and C. H. Olk, Carbon 33, 941 (1995).

    Article  Google Scholar 

  23. S.-H. Jhi, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 85, 1710 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.I. Buryakov, A.I. Romanenko, O.B. Anikeeva, V.L. Kuznetsov, A.N. Usol’tseva, E.N. Tkachev, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 132, No. 1, pp. 178–182.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buryakov, T.I., Romanenko, A.I., Anikeeva, O.B. et al. Effect of gases on the temperature dependence of the electric conductivity of CVD multiwalled carbon nanotubes. J. Exp. Theor. Phys. 105, 155–159 (2007). https://doi.org/10.1134/S1063776107070345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107070345

PACS numbers

Navigation