Skip to main content
Log in

Dynamic phase transition in the kinetic spin-1 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Within a mean-field approach, the stationary states of the kinetic spin-1 Blume-Capel model in the presence of a time-dependent oscillating external magnetic field is studied. The Glauber-type stochastic dynamics is used to describe the time evolution of the system and obtain the mean-field dynamic equation of motion. The dynamic phase-transition points are calculated and phase diagrams are presented in the temperature and crystal-field interaction plane. According to the values of the magnetic field amplitude, three fundamental types of phase diagrams are found: One exhibits a dynamic tricritical point, while the other two exhibit a dynamic zero-temperature critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Stanley, Introduction to the Phase Transitions and Critical Phenomena (Oxford Univ. Press, Oxford, 1971; Mir, Moscow, 1973); S. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, Mass., 1976; Mir, Moscow, 1980).

    Google Scholar 

  2. T. Tomé and M. J. de Oliveira, Phys. Rev. A 41, 4251 (1990).

    Article  ADS  Google Scholar 

  3. J. F. F. Mendes and E. J. S. Lage, J. Stat. Phys. 64, 653 (1991).

    Article  MATH  Google Scholar 

  4. R. J. Glauber, J. Math. Phys. 4, 294 (1963).

    Article  MATH  Google Scholar 

  5. M. Acharyya, Phys. Rev. E 56, 2407 (1997); A. Chatterjee and B. K. Chakrabarti, Phys. Rev. E 67, 046113 (2003).

    Article  ADS  Google Scholar 

  6. S. W. Sides, P. A. Rikvold, and M. A. Novotny, Phys. Rev. Lett. 81, 834 (1998); Phys. Rev. E 59, 2710 (1999); G. Korniss, C. J. White, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E 63, 016120 (2001); G. Korniss, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E 66, 056127 (2002).

    Article  ADS  Google Scholar 

  7. B. K. Chakrabarti and M. Acharyya, Rev. Mod. Phys. 71, 847 (1999); M. Acharyya, Int. J. Mod. Phys. C 16, 1631 (2005).

    Article  ADS  Google Scholar 

  8. A. Krawiecki, Int. J. Mod. Phys. B 19, 4769 (2005).

    Article  ADS  Google Scholar 

  9. M. F. Zimmer, Phys. Rev. E 47, 3950 (1993); M. Acharyya and B. K. Chakrabarti, Phys. Rev. B 52, 6550 (1995); M. Acharyya, Phys. Rev. E 58, 179 (1998); H. Fujisaka, H. Tutu, and P. A. Rikvold, Phys. Rev. E 63, 036109 (2001).

    Article  ADS  Google Scholar 

  10. H. Tutu and N. Fujiwara, J. Phys. Soc. Jpn. 73, 2680 (2004).

    Article  ADS  MATH  Google Scholar 

  11. M. Khorrami and A. Aghamohammadi, Phys. Rev. E 65, 056129 (2002).

    Google Scholar 

  12. H. Jang and M. J. Grimson, Phys. Rev. E 63, 066119 (2001); H. Jang, M. J. Grimson, and C. K. Hall, Phys. Rev. B 67, 094411 (2003); Phys. Rev. E 68, 046115 (2003); Z. Huang, Z. Chen, F. Zhang, and Y. Du, Phys. Lett. A 338, 485 (2005).

  13. T. Yasui, H. Tutu, M. Yamamoto, and H. Fujisaka, Phys. Rev. E 66, 036123 (2002).

    Google Scholar 

  14. E. Machado, G. M. Buendía, P. A. Rikvold, and R. M. Ziff, Phys. Rev. E 71, 016120 (2005).

    Google Scholar 

  15. G. M. Buendía and E. Machado, Phys. Rev. E 58, 1260 (1998).

    Article  ADS  Google Scholar 

  16. M. Keskin, O. Canko, and E. Kantar, Int. J. Mod. Phys. C 17, 1239 (2006); O. Canko, Ü. Temizer, and M. Keskin, Int. J. Mod. Phys. C 17, 1717 (2006).

    Article  ADS  MATH  Google Scholar 

  17. M. Keskin, O. Canko, and B. Deviren, Phys. Rev. E 74, 011110 (2006); O. Canko, B. Deviren, and M. Keskin, J. Phys.: Condens. Matter 18, 6635 (2006); M. Keskin, O. Canko, and M. Kirak, J. Stat. Phys. 127, 359 (2007).

  18. Q. Jiang, H. N. Yang, and G. C. Wang, Phys. Rev. B 52, 14911 (1995); J. Appl. Phys. 79, 5122 (1996).

  19. W. Kleemann, T. Braun, J. Dec, and O. Petracic, Phase Transit. 78, 811 (2005).

    Article  Google Scholar 

  20. M. Keskin, O. Canko, and Ü. Temizer, Phys. Rev. E 72, 036125 (2005).

  21. M. Blume, Phys. Rev. 141, 517 (1966).

    Article  ADS  Google Scholar 

  22. H. W. Capel, Physica (Utrecht) 32, 966 (1966); 33, 295 (1967).

    Article  ADS  Google Scholar 

  23. S. Grollau, E. Kierlik, M. L. Rosinberg, and G. Tarjus, Phys. Rev. E 63, 41111 (2001); A. Du, Y. Q. Yü, and H. J. Liu, Physica A (Amsterdam) 320, 387 (2003); C. Ekiz, Phys. Lett. A 324, 114 (2004).

    Google Scholar 

  24. T. Fiig, B. M. Gorman, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E 50, 1930 (1994).

    Article  ADS  Google Scholar 

  25. F. Manzo and E. Olivieri, J. Stat. Phys. 104, 1029 (2001).

    Article  MATH  Google Scholar 

  26. C. Ekiz, M. Keskin, and O. Yalçin, Physica A (Amsterdam) 293, 215 (2001).

    ADS  MATH  Google Scholar 

  27. R. Kikuchi, Suppl. Prog. Theor. Phys. 35, 1 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keskin, M., Canko, O. & Temizer, Ü. Dynamic phase transition in the kinetic spin-1 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane. J. Exp. Theor. Phys. 104, 936–942 (2007). https://doi.org/10.1134/S1063776107060118

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107060118

PACS numbers

Navigation