Skip to main content
Log in

Dzyaloshinsky-Moriya antisymmetric exchange coupling in cuprates: Oxygen effects

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We reconsider the conventional Moriya approach to the Dzyaloshinsky-Moriya antisymmetric exchange coupling for a single Cu1-O-Cu2 bond in cuprates using a perturbation scheme that provides an optimal way to account for intra-atomic electron correlations, low-symmetry crystal field, and local spin-orbital contributions with a focus on the oxygen term. The Dzyaloshinsky vector and the corresponding weak ferromagnetic moment are shown to be a superposition of comparable and, sometimes, competing local Cu and O contributions. We predict the effect of oxygen staggered spin polarization in the antiferromagnetic edge-shared CuO2 chains due to the uncompensated oxygen Dzyaloshinsky vectors. The polarization is perpendicular to both the main chain antiferromagnetic vector and the CuO2 chain normal. The intermediate 17O NMR is shown to be an effective tool to inspect the effects of Dzyaloshinsky-Moriya coupling in an external magnetic field. In particular, we argue that the puzzling planar 17O Knight shift anomalies observed in the paramagnetic phase of the generic Dzyaloshinsky-Moriya antiferromagnetic cuprate La2CuO4 can be assigned to the effect of the field-induced staggered magnetization. Finally, we revisit the effects of symmetric spin anisotropy, in particular, those directly induced by the Dzyaloshinsky-Moriya coupling. The perturbation scheme generalizes the well-known Moriya approach and presents a basis for reliable quantitative estimates for the symmetric partner of the Dzyaloshinsky-Moriya coupling. In contrast to the conventional standpoint, the parameters of the effective two-ion spin anisotropy are shown to incorporate the contributions of a single-ion anisotropy for two-hole configurations at both Cu and O sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Borovik-Romanov and M. P. Orlova, Sov. Phys. JETP 4, 531 (1957).

    Google Scholar 

  2. I. E. Dzialoshinskii, Sov. Phys. JETP 5, 1259 (1957); J. Phys. Chem. Solids 4, 241 (1958).

    Google Scholar 

  3. T. Moriya, Phys. Rev. Lett. 4, 228 (1960); Phys. Rev. 120, 91 (1960).

    Article  ADS  Google Scholar 

  4. A. S. Moskvin and I. G. Bostrem, Fiz. Tverd. Tela (Leningrad) 19, 2616 (1977) [Sov. Phys. Solid State 19, 1532 (1977)].

    Google Scholar 

  5. T. Thio, T. R. Thurster, N. W. Preyer, et al., Phys. Rev. B 38, 905 (1988).

    Article  ADS  Google Scholar 

  6. M. Oshikawa and I. Affleck, Phys. Rev. Lett. 79, 2883 (1997); I. Affleck and M. Oshikawa, Phys. Rev. B 60, 1038 (1999).

    Article  ADS  Google Scholar 

  7. D. Coffey, T. M. Rice, and F. C. Zhang, Phys. Rev. B 44, 10112 (1991); N. E. Bonesteel, T. M. Rice, and F. C. Zhang, Phys. Rev. Lett. 68, 26844 (1992); N. E. Bonesteel, Phys. Rev. B 47, 11 302 (1993).

    Google Scholar 

  8. W. Koshibae, Y. Ohta, and S. Maekawa, Phys. Rev. B 47, 3391 (1993); 50, 3767 (1994).

    Article  ADS  Google Scholar 

  9. L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Rev. Lett. 69, 836 (1992).

    Article  ADS  Google Scholar 

  10. W. Koshibae, Y. Ohta, and S. Maekawa, Phys. Rev. Lett. 71, 467 (1993); L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Rev. Lett. 71, 468 (1993).

    Article  ADS  Google Scholar 

  11. I. Tsukada, X. F. Sun, S. Komiya, et al., Phys. Rev. B 67, 224 401 (2003).

  12. M. Hücker, V. Kataev, J. Pommer, et al., Phys. Rev. B 70, 214 515 (2004).

  13. R. E. Walstedt, B. S. Shastry, and S. W. Cheong, Phys. Rev. Lett. 72, 3610 (1994); R. E. Walstedt and S. W. Cheong, Phys. Rev. B 64, 014 404 (2001).

    Article  ADS  Google Scholar 

  14. A. Kolezhuk and T. Vekua, Phys. Rev. B 72, 094424 (2005).

  15. T. Rööm, D. Hüvonen, U. Nagel, et al., Phys. Rev. B 70, 144 417 (2004).

  16. P. W. Anderson, Phys. Rev. 115, 2 (1959); Solid State Phys. 14, 99 (1963).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. L. Shekhtman, A. Aharony, and O. Entin-Wohlman, Phys. Rev. B 47, 174 (1993).

    Article  ADS  Google Scholar 

  18. W. Low, in Solid State Physics (Academic, New York, 1960), Suppl. 2 [Paramagnetic Resonance in Solids (Inostrannaya Literatura, Moscow, 1962)].

    Google Scholar 

  19. T. Yildirim, A. B. Harris, O. Entin-Wohlman, and A. Aharony, Phys. Rev. Lett. 73, 2919 (1994); Phys. Rev. B 52, 10239 (1995).

    Article  ADS  Google Scholar 

  20. S. Tornow, O. Entin-Wohlman, and A. Aharony, Phys. Rev. B 60, 10206 (1999).

    Google Scholar 

  21. G. Herzberg, Proc. R. Soc. London, Ser. A 248, 309 (1958); L. Veseth, J. Phys. B: At. Mol. Phys. 16, 2713 (1983).

    Article  ADS  Google Scholar 

  22. S. Renold, S. Pliberŝek, E. P. Stoll, et al., Eur. Phys. J. B 23, 3 (2001).

    Article  ADS  Google Scholar 

  23. F. Keffer, Phys. Rev. 126, 896 (1962).

    Article  ADS  MATH  Google Scholar 

  24. H. Eskes and G. A. Sawatzky, Phys. Rev. B 43, 119 (1991).

    Article  ADS  Google Scholar 

  25. A. S. Moskvin, R. Neudert, M. Knupfer, et al., Phys. Rev. B 65, 180512(R) (2002).

  26. A. S. Moskvin, Sov. Phys. Solid State 32, 959 (1990).

    Google Scholar 

  27. E. M. L. Chung, G. J. McIntyre, D. McK. Paul, et al., Phys. Rev. B 68, 144410 (2003).

    Google Scholar 

  28. A. U. B. Wolter, P. Wzietek, S. Sullow, et al., Phys. Rev. Lett. 94, 057204 (2005).

    Google Scholar 

  29. A. Zheludev, S. Maslov, G. Shirane, et al., Phys. Rev. B 59, 11432 (1999).

  30. M. D. Lumsden, B. C. Sales, D. Mandrus, et al., Phys. Rev. Lett. 86, 159 (2001).

    Article  ADS  Google Scholar 

  31. A. S. Moskvin, I. G. Bostrem, and M. A. Sidorov, Zh. Éksp. Teor. Fiz. 103, 2499 (1993) [JETP 76, 116 (1993)].

    Google Scholar 

  32. K. Yosida, J. Appl. Phys. 39, 511 (1960).

    Article  ADS  Google Scholar 

  33. V. Y. Yushankhai and R. Hayn, Europhys. Lett. 47, 116 (1999).

    Article  ADS  Google Scholar 

  34. M. Oshikawa, K. Ueda, H. Aoki, et al., J. Phys. Soc. Jpn. 68, 3181 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moskvin, A.S. Dzyaloshinsky-Moriya antisymmetric exchange coupling in cuprates: Oxygen effects. J. Exp. Theor. Phys. 104, 913–927 (2007). https://doi.org/10.1134/S106377610706009X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377610706009X

PACS numbers

Navigation