Skip to main content
Log in

Pseudogap behavior in Bi2Ca2SrCu2O8: Results of the generalized dynamical mean-field approach

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Pseudogap phenomena are observed for the normal underdoped phase of different high-T c cuprates. Among others, the Bi2Sr2CaCu2O8 − δ (Bi2212) compound is one of the most studied experimentally. To describe the pseudogap regime in Bi2212, we use a novel generalized ab initio LDA + DMFT + Σk hybrid scheme. This scheme is based on the strategy of one of the most powerful computational tools for real correlated materials: the local density approximation (LDA) + dynamical mean-field theory (DMFT). Conventional LDA + DMFT equations are here supplied with an additional (momentum-dependent) self-energy Σk in the spirit of our recently proposed DMFT + Σk approach taking into account pseudogap fluctuations. In the present model, Σk describes nonlocal correlations induced by short-range collective Heisenberg-like antiferromagnetic spin fluctuations. The effective single-impurity problem of the DMFT is solved by the numerical renormalization group (NRG) method. Material-specific model parameters for the effective x 2y 2 orbital of Cu-3d shell of the Bi2212 compound, e.g., the values of intra-and interlayer hopping integrals between different Cu sites, the local Coulomb interaction U, and the pseudogap potential Δ were obtained within the LDA and LDA + DMFT schemes. Here, we report on the theoretical LDA + DMFT + Σk quasiparticle band dispersion and damping, Fermi surface renormalization, momentum anisotropy of (quasi)static scattering, densities of states, spectral densities, and angular-resolved photoemission (ARPES) spectra, taking into account pseudogap and bilayer splitting effects for normal (slightly) underdoped Bi2212 (δ = 0.15). We show that LDA + DMFT + Σk successfully describes strong (pseudogap) scattering close to Brillouin zone boundaries. Our calculated LDA + DMFT + Σk Fermi surfaces and ARPES spectra in the presence of pseudogap fluctuations are almost insensitive to the bilayer splitting strength. However, our LDA-calculated value of bilayer splitting is rather small to describe the experimentally observed peak-dip-hump structure. The results obtained are in good semiquantitative agreement with various recent ARPES experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999); M. V. Sadovskii, Usp. Fiz. Nauk 171, 539 (2001).

    Article  ADS  Google Scholar 

  2. A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003); J. C. Campuzano, M. R. Norman, and M. Randeria, in Physics of Superconductors, Ed. by K. H. Bennemann and J. B. Ketterson (Springer, Berlin, 2004), Vol. 2, p. 167; J. Fink et al., cond-mat/0512307; X. J. Zhou et al., cond-mat/0604284.

    Article  ADS  Google Scholar 

  3. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 82, 198 (2005).

    Article  Google Scholar 

  4. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, et al., Phys. Rev. B 72, 155105 (2005).

    Google Scholar 

  5. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Low Temp. Phys. 32, 528 (2006).

    Article  Google Scholar 

  6. V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, et al., J. Phys.: Condens. Matter 9, 7359 (1997).

    Article  ADS  Google Scholar 

  7. A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884 (1998).

    Article  ADS  Google Scholar 

  8. I. A. Nekrasov, K. Held, N. Blümer, et al., Europhys. J. B 18, 55 (2000).

    ADS  Google Scholar 

  9. K. Held, I. A. Nekrasov, G. Keller, et al., Psi-k Newsletter 56, 65 (2003), psi-k.dl.ac.uk/newsletters/News/_56/Highlight/_56.pdf.

    Google Scholar 

  10. K. Held, I. A. Nekrasov, N. Blümer, et al., Int. J. Mod. Phys. B 15, 2611 (2001); K. Held, I. A. Nekrasov, G. Keller, et al., in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, Ed. by J. Grotendorst, D. Marks, and A. Muramatsu (NIC Directors, Forschungszentrum Jülich, 2002), NIC Ser., Vol. 10, p. 175; A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, in Electron Correlations and Materials Properties, Ed. by A. Gonis, N. Kioussis, and M. Ciftan, 2nd ed. (Kluwer Academic/Plenum, New York, 2002), p. 428.

    Article  ADS  Google Scholar 

  11. W. Kohn and L. J. Sham, Phys. Rev., A 140, 1133 (1965); L. J. Sham and W. Kohn, Phys. Rev. 145, 561 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  12. L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971); U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).

    Article  ADS  Google Scholar 

  13. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

    Article  ADS  Google Scholar 

  14. D. Vollhardt, in Correlated Electron Systems, Ed. by V. J. Emery (World Sci., Singapore, 1993), p. 57.

    Google Scholar 

  15. Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187 (1995).

    Article  ADS  Google Scholar 

  16. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Kotliar and D. Vollhardt, Phys. Today 57(3), 53 (2004).

    Article  Google Scholar 

  18. K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975); H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B 21, 1003, 1044 (1980); A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1993).

    Article  ADS  Google Scholar 

  19. R. Bulla, A. C. Hewson, and Th. Pruschke, J. Phys.: Condens. Matter 10, 8365 (1998).

    Article  ADS  Google Scholar 

  20. D. Pines, cond-mat/0404151.

  21. J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. B 60, 667 (1999).

    Article  ADS  Google Scholar 

  22. E. Z. Kuchinskii and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 115, 1765 (1999).

    Google Scholar 

  23. A. M. S. Tremblay, B. Kyung, and D. Senechal, Low Temp. Phys. 32, 561 (2006).

    Article  Google Scholar 

  24. Th. Maier, M. Jarrell, Th. Pruschke, and M. Hettler, Rev. Mod. Phys. 77, 1027 (2005).

    Article  ADS  Google Scholar 

  25. Th. A. Maier, Th. Pruschke, and M. Jarrell, Phys. Rev. B 66, 075102 (2002).

  26. G. Kotliar, S. Y. Savrasov, G. Palsson, and G. Biroli, Phys. Rev. Lett. 87, 186401 (2001); M. Capone, M. Civelli, S. S. Kancharla, et al., Phys. Rev. B 69, 195105 (2004).

    Google Scholar 

  27. B. Kyung, S. S. Kancharla, D. Senechal, et al., cond-mat/0502565.

  28. M. Civelli, M. Capone, S. S. Kancharla, et al., cond-mat/0411696.

  29. C. Gros and R. Valenti, Ann. Phys. (Leipzig) 3, 460 (1994).

    ADS  Google Scholar 

  30. D. Senechal, D. Perez, and M. Pioro-Ladrie, Phys. Rev. Lett. 84, 522 (2000); D. Senechal, D. Perez, and D. Plouffe, Phys. Rev. B 66, 075129 (2002).

    Article  ADS  Google Scholar 

  31. D. Senechal and A.-M. S. Tremblay, Phys. Rev. Lett. 92, 126401 (2004).

    Google Scholar 

  32. T. D. Stanescu and P. Phillips, Phys. Rev. Lett. 91, 017002 (2003).

    Google Scholar 

  33. K. Haule, A. Rosch, J. Kroha, and P. Wölfle, Phys. Rev. Lett. 89, 236402 (2002); Phys. Rev. B 68, 155119 (2003).

    Google Scholar 

  34. B. Kyung, V. Hankevich, A.-M. Dare, and A.-M. S. Tremblay, Phys. Rev. Lett. 93, 147004 (2004).

    Google Scholar 

  35. A. A. Katanin and A. P. Kampf, Phys. Rev. Lett. 93, 106406 (2004).

    Google Scholar 

  36. D. Rohe and W. Metzner, Phys. Rev. B 71, 115116 (2005).

  37. P. Prelovsek and A. Ramsak, Phys. Rev. B 63, 180506 (2001); cond-mat/0502044.

  38. S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. Lett. 90, 086402 (2003).

    Google Scholar 

  39. P. Sun and G. Kotliar, Phys. Rev. Lett. 92, 196402 (2004).

    Google Scholar 

  40. A. Toschi, A. A. Katanin, and K. Held, cond-mat/0603100.

  41. C. Berthod, T. Giamarchi, S. Biermann, and A. Georges, cond-mat/0602304.

  42. M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 77, 2070 (1979).

    Google Scholar 

  43. Y. M. Vilk and A.-M. S. Tremblay, J. Phys. (Paris) 7, 1309 (1997).

    Google Scholar 

  44. O. K. Andersen, A. I. Liechtenstein, O. Jepsen, and F. Paulsen, J. Phys. Chem. Solids 56, 1573 (1995).

    Article  Google Scholar 

  45. M. Hybertsen and L. Mattheiss, Phys. Rev. Lett. 60, 1661 (1988).

    Article  ADS  Google Scholar 

  46. J. M. Tarascon, Y. LePage, P. Barboux, et al., Phys. Rev. B 37, 9382 (1988).

    Article  ADS  Google Scholar 

  47. S. A. Sunshine, T. Siegrist, L. F. Schneemeyer, et al., Phys. Rev. B 38, 893 (1988).

    Article  ADS  Google Scholar 

  48. O. K. Anderson, Phys. Rev. B 12, 3060 (1975); H. L. Skriver, The LMTO Method (Springer, New York, 1984).

    Article  ADS  Google Scholar 

  49. N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997); W. Ku, H. Rosner, W. E. Pickett, et al., Phys. Rev. Lett. 89, 167204 (2002).

    Article  ADS  Google Scholar 

  50. V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, et al., Phys. Rev. B 71, 125119 (2005).

    Google Scholar 

  51. A. A. Kordyuk, S. V. Borisenko, M. Knupfer, and J. Fink, Phys. Rev. B 67, 064504 (2003).

    Google Scholar 

  52. A. A. Kordyuk, S. V. Borisenko, A. N. Yaresko, et al., Phys. Rev. B 70, 214525 (2004).

    Google Scholar 

  53. O. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen, Phys. Rev. B 39, 1708 (1989).

    Article  ADS  Google Scholar 

  54. A. Kaminski, H. M. Fretwell, M. R. Norman, et al., Phys. Rev. B 71, 014517 (2005).

    Google Scholar 

  55. T. Valla, A. V. Fedorov, P. D. Johnson, et al., Phys. Rev. Lett. 85, 828 (2000).

    Article  ADS  Google Scholar 

  56. A. Kaminski, H. M. Fretwell, M. R. Norman, et al., cond-mat/0404385.

  57. C. M. Varma and E. A. Abrahams, Phys. Rev. Lett. 86, 4652 (2001).

    Article  ADS  Google Scholar 

  58. E. Abrahams and C. M. Varma, Proc. Nat. Acad. Sci. USA 97, 5714 (2000).

    Article  ADS  Google Scholar 

  59. A. Bansil, M. Lindroos, S. Sahrakorpi, and R. S. Markiewicz, Phys. Rev. B 71, 012503 (2005).

    Google Scholar 

  60. A. Mans, I. Santoso, Y. Huang, et al., Phys. Rev. Lett. 96, 107007 (2006).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuchinskii, E.Z., Nekrasov, I.A., Pchelkina, Z.V. et al. Pseudogap behavior in Bi2Ca2SrCu2O8: Results of the generalized dynamical mean-field approach. J. Exp. Theor. Phys. 104, 792–804 (2007). https://doi.org/10.1134/S1063776107050135

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107050135

PACS numbers

Navigation