Skip to main content
Log in

Commensurability effects in a Josephson tunnel junction in the field of an array of magnetic particles

  • Order, Disorder, and Phase Transitions in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Commensurability effects have been theoretically studied in a hybrid system consisting of a Josephson junction located in a nonuniform field induced by an array of magnetic particles. A periodic phase-difference distribution in the junction that is caused by the formation of a regular lattice of Abrikosov vortices generated by the magnetic field of the particles in superconducting electrodes is calculated. The dependence of the critical current through the junction I c on the applied magnetic field H is shown to differ strongly from the conventional Fraunhofer diffraction pattern because of the periodic modulation of the Josephson phase difference created by the vortices. More specifically, the I c(H) pattern contains additional resonance peaks, whose positions and heights depend on the parameters and magnetic state of the particles in the array. These specific features of the I c(H) dependence are observed when the period of the Josephson current modulation by the field of the magnetic particles and the characteristic scale of the change in the phase difference by the applied magnetic field are commensurable. The conditions that determine the positions of the commensurability peaks are obtained, and they are found to agree well with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. McLaughlin and A. C. Scott, Phys. Rev. A 18, 1652 (1978).

    Article  ADS  Google Scholar 

  2. A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982; Mir, Moscow, 1984), p. 88.

    Google Scholar 

  3. A. A. Golubov, I. L. Serpuchenko, and A. V. Ustinov, Zh. Éksp. Teor. Fiz. 94(6), 297 (1988) [Sov. Phys. JETP 67, 1256 (1988).

    Google Scholar 

  4. B. A. Malomed and A. V. Ustinov, Fiz. Nizk. Temp. 15, 1128 (1989) [Sov. J. Low Temp. Phys. 15, 622 (1989)].

    Google Scholar 

  5. M. A. Itzler and M. Tinkham, Phys. Rev. B 51, 435 (1995).

    Article  ADS  Google Scholar 

  6. R. G. Mints and V. G. Kogan, Phys. Rev. B 55, R8682 (1997).

    Article  ADS  Google Scholar 

  7. H. Hilgenkamp, J. Mannhart, and B. Mayer, Phys. Rev. B 53, 14586 (1996).

    Article  ADS  Google Scholar 

  8. H. Hilgenkamp and J. Mannhart, Rev. Mod. Phys. 74, 485 (2002).

    Article  Google Scholar 

  9. H. J. H. Smilde, Ariando, D. H. A. Blank, et al., Phys. Rev. Lett. 88, 057004 (2002).

  10. L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, Solid State Commun. 25, 1053 (1978).

    Article  Google Scholar 

  11. E. Goldibin, D. Koelle, and R. Kleiner, Phys. Rev. B 66, 100508(R) (2002).

  12. R. G. Mints, I. Papiashvili, J. R. Kirtley, et al., Phys. Rev. Lett. 89, 067004 (2002).

    Google Scholar 

  13. H. Hilgenkamp, Ariando, H. J. H. Smilde, et al., Nature 422, 50 (2003).

    Article  ADS  Google Scholar 

  14. C. C. Tsuei and J. R. Kirtley, Physica C (Amsterdam) 367, 1 (2002).

    ADS  Google Scholar 

  15. B. D. Josephson, Adv. Phys. 14, 419 (1965).

    Article  ADS  Google Scholar 

  16. N. Uchida, K. Enpuku, Y. Matsugaki, et al., J. Appl. Phys. 54, 5287 (1983).

    Article  ADS  Google Scholar 

  17. A. A. Golubov and M. Yu. Kupriyanov, Zh. Éksp. Teor. Fiz. 92, 1512 (1987) [Sov. Phys. JETP 65, 849 (1987)]; J. Low Temp. Phys. 70, 83 (1988).

    Google Scholar 

  18. M. V. Fistul’, Pis’ma Zh. Éksp. Teor. Fiz. 49, 95 (1989) [JETP Lett. 49, 113 (1989)]; 52, 823 (1990) [52, 192 (1990)]; M. V. Fistul and G. F. Giuliani, Phys. Rev. B 58, 9348 (1998).

    ADS  Google Scholar 

  19. S. L. Miller, K. R. Biaga, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 31, 2684 (1985); O. B. Hyun, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 40, 175 (1989).

    Article  ADS  Google Scholar 

  20. A. V. Ustinov, Appl. Phys. Lett. 80, 3153 (2002).

    Article  ADS  Google Scholar 

  21. E. Goldibin, A. Sterck, T. Gaber, et al., Phys. Rev. Lett. 92, 057005 (2004).

  22. A. Y. Aladyshkin, A. A. Fraerman, S. A. Gusev, et al., J. Magn. Magn. Mater. 258–259, 406 (2003).

    Article  Google Scholar 

  23. S. N. Vdovichev, B. A. Gribkov, S. A. Gusev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 80, 758 (2004) [JETP Lett. 80, 651 (2004).

    Google Scholar 

  24. A. V. Samokhvalov, Pis’ma Zh. Éksp. Teor. Fiz. 78, 822 (2003) [JETP Lett. 78, 369 (2003)].

    Google Scholar 

  25. I. F. Lyuksyutov and V. L. Pokrovsky, Adv. Phys. 54, 67 (2005).

    ADS  Google Scholar 

  26. S. N. Vdovichev, B. A. Gribkov, S. A. Gusev, et al., J. Magn. Magn. Mater. 300, 202 (2006).

    Article  ADS  Google Scholar 

  27. A. A. Fraerman, S. A. Gusev, Yu. N. Nozdrin, et al., Phys. Rev. B 73, 100503(R) (2006).

  28. K. K. Likharev, Introduction to the Dynamics of Josephson Junctions (Nauka, Moscow, 1985), p. 159 [in Russian].

    Google Scholar 

  29. I. F. Lyuksyutov and V. Pokrovsky, Phys. Rev. Lett. 81, 2344 (1998).

    Article  ADS  Google Scholar 

  30. M. J. Van Bael, J. Bekaert, K. Temst, et al., Phys. Rev. Lett. 86, 155 (2001).

    Article  ADS  Google Scholar 

  31. M. V. Milosevic and F. M. Peeters, Phys. Rev. B 69, 104522 (2004).

    Google Scholar 

  32. A. Barone, F. Esposito, K. K. Likharev, et al., J. Appl. Phys. 53, 5802 (1982).

    Article  ADS  Google Scholar 

  33. L. N. Bulaevskii, M. Ledvij, and V. G. Kogan, Phys. Rev. B 46, 366 (1992).

    Article  ADS  Google Scholar 

  34. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics, 4th ed. (Nauka, Moscow, 1988; Pergamon, New York, 1988), p. 123.

    Google Scholar 

  35. G. M. Zaslavskiĭ and R. Z. Sagdeev, Introduction to Nonlinear Physics (Nauka, Moscow, 1988), p. 49 [in Russian].

    Google Scholar 

  36. R. G. Mints, Phys. Rev. B 57, R3221 (1998).

    Article  ADS  Google Scholar 

  37. A. I. Buzdin and A. E. Koshelev, Phys. Rev. B 67, 220504(R) (2003).

  38. L. Balents and S. H. Simon, Phys. Rev. B 51, 6515 (1995).

    Article  ADS  Google Scholar 

  39. M. A. Itzler and M. Tinkham, Phys. Rev. B 51, 9411 (1995).

    Article  ADS  Google Scholar 

  40. A. D. Polyanin, Handbook on Linear Equations of Mathematical Physics (Fizmatlit, Moscow, 2001), p. 414 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Samokhvalov, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 131, No. 3, pp. 500–510.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samokhvalov, A.V. Commensurability effects in a Josephson tunnel junction in the field of an array of magnetic particles. J. Exp. Theor. Phys. 104, 451–460 (2007). https://doi.org/10.1134/S1063776107030119

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107030119

PACS numbers

Navigation