Skip to main content
Log in

Gravitational loss-cone instability

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study physical corollaries of the existing analogy between the simplest plasma traps (mirror traps) and star clusters surrounding massive black holes or dense galactic nuclei. There is a loss cone in the system through which plasma particles with low velocities transverse to the trap axis or, similarly, stars with low angular momenta (destroyed or absorbed by the central body) escape. The consequences of the “beam-like” deformation of the plasma distribution function in a trap are well known: a peculiar loss-cone instability producing a plasma flow into the loss cone develops as a result. We show that a similar gravitational loss-cone instability can also arise under certain conditions in the galactic case of interest to us. This instability is related to the slow precessional motions of highly elongated (nearly radial) stellar orbits and the main condition for its growth is that the precession of such orbits be retrograde (in the direction opposite to the orbital rotation of stars). Only under this condition do oscillations that can become unstable in the presence of a loss cone arise instead of the radial orbit instability (a variety of the Jeans instability in systems with highly elongated orbits) that takes place in the case of prograde precession. The instability produces a stream of stars onto the galactic center, i.e., serves as a mechanism of fueling the nuclear activity of galaxies. For a mathematical analysis, we have obtained relatively simple characteristic equations that describe small perturbations in a sphere of radially highly elongated stellar orbits. These characteristic equations are derived through a number of successive simplifications from a general linearized system of equations, including the collisionless Boltzmann kinetic equation and the Poisson equation (in action-angle variables). The central point of our analysis of the characteristic equations is preliminary detection of neutral modes (or proof of their absence in the case of stability).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Rosenbluth and R. F. Post, Phys. Fluids 8, 547 (1965).

    Article  Google Scholar 

  2. A. B. Mikhaĭlovskiĭ, Theory of Plasma Instabilities (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1974), Vol. 1.

    Google Scholar 

  3. V. L. Polyachenko, Pis’ma Astron. Zh. 17, 877 (1991) [Sov. Astron. Lett. 17, 371 (1991)].

    ADS  Google Scholar 

  4. S. Tremaine, Astrophys. J. 625, 143 (2005).

    Article  ADS  Google Scholar 

  5. V. L. Polyachenko, Pis’ma Astron. Zh. 17, 691 (1991) [Sov. Astron. Lett. 17, 292 (1991)].

    ADS  Google Scholar 

  6. G. S. Bisnovatyĭ-Kogan, Ya. B. Zel’dovich, R. Z. Sagdeev, and A. M. Fridman, Prikl. Mekh. Tekh. Fiz. 3, 3 (1969).

    Google Scholar 

  7. A. B. Mikhaĭlovskiĭ and A. M. Fridman, Zh. Éksp. Teor. Fiz. 61, 457 (1971) [Sov. Phys. JETP 34, 243 (1972)].

    Google Scholar 

  8. V. L. Polyachenko and A. M. Fridman, Equilibrium and Stability of Gravitating Systems (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  9. A. M. Fridman and V. L. Polyachenko, Physics of Gravitating Systems (Springer, New York, 1984).

    Google Scholar 

  10. V. L. Polyachenko and I. G. Shukhman, Preprint No. 1-2-72, SIBIZMIR SO AN SSSR (Siberian Inst. of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, USSR Acad. Sci., Irkutsk, 1972).

  11. V. A. Antonov, Dynamics of Galaxies and Star Clusters (Nauka, Alma-Ata, 1973), p. 139 [in Russian].

    Google Scholar 

  12. V. L. Polyachenko, Zh. Éksp. Teor. Fiz. 101, 1409 (1992) [Sov. Phys. JETP 74, 755 (1992)].

    ADS  Google Scholar 

  13. A. V. Stepanov, Astron. Zh. 50, 1243 (1973) [Sov. Astron. 17, 781 (1973)].

    ADS  Google Scholar 

  14. V. V. Zaitsev and A. V. Stepanov, Sol. Phys. 88, 297 (1983).

    Article  ADS  Google Scholar 

  15. D. B. Melrose, Instabilities in Space and Laboratory Plasmas (Cambridge Univ. Press, Cambridge, 1986), p. 288.

    Google Scholar 

  16. A. P. Lightman and S. L. Shapiro, Astrophys. J. 211, 244 (1977).

    Article  ADS  Google Scholar 

  17. S. L. Shapiro and A. B. Marchant, Astrophys. J. 225, 603 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  18. J. Frank and M. J. Rees, Mon. Not. R. Astron. Soc. 176, 633 (1976).

    ADS  Google Scholar 

  19. V. I. Dokuchaev and L. M. Ozernoĭ, Zh. Éksp. Teor. Fiz. 73, 1587 (1977) [Sov. Phys. JETP 46, 834 (1977)].

    ADS  Google Scholar 

  20. E. V. Polyachenko, Mon. Not. R. Astron. Soc. 348, 345 (2004).

    Article  ADS  Google Scholar 

  21. V. L. Polyachenko and E. V. Polyachenko, Astron. Zh. 81, 963 (2004) [Astron. Rep. 48, 877 (2004)].

    Google Scholar 

  22. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 187, 101 (1979).

    MATH  ADS  Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics, 4th ed. (Nauka, Moscow, 1988; Pergamon, New York, 1988).

    Google Scholar 

  24. V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed. (Nauka, Moscow, 1979; Springer, New York, 1989).

    Google Scholar 

  25. V. S. Synakh, A. M. Fridman, and I. G. Shukhman, Dokl. Akad. Nauk SSSR 201, 827 (1971).

    Google Scholar 

  26. V. L. Polyachenko and I. G. Shukhman, Astron. Zh. 58, 933 (1981) [Sov. Astron. 25, 533 (1981)].

    MATH  ADS  MathSciNet  Google Scholar 

  27. V. L. Polyachenko and I. G. Shukhman, Astron. Zh. 59, 228 (1982) [Sov. Astron. 26, 140 (1982)].

    ADS  Google Scholar 

  28. O. Penrose, Phys. Fluids 3, 258 (1960).

    Article  MATH  Google Scholar 

  29. F. J. Hickernell, J. Fluid Mech. 142, 431 (1984).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. I. G. Shukhman, J. Fluid Mech. 233, 587 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. K. P. Rauch and S. Tremaine, New Astron. 1, 149 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.L. Polyachenko, E.V. Polyachenko, I.G. Shukhman, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 131, No. 3, pp. 443–465.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyachenko, V.L., Polyachenko, E.V. & Shukhman, I.G. Gravitational loss-cone instability. J. Exp. Theor. Phys. 104, 396–416 (2007). https://doi.org/10.1134/S1063776107030053

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107030053

PACS numbers

Navigation