Skip to main content
Log in

Rayleigh scattering from a trapped bose condensate and the corresponding recoil atom velocity distribution

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An approach has been developed that allows the Rayleigh scattering cross section to be calculated with allowance for the quantum character of motion of the center of mass of the trapped scattering particles. The shape of the line of light scattering from a Bose condensate in a parabolic trap has been studied. A shift of the scattering line center is equal to the recoil shift, while the line width depends on the chemical potential of the Bose gas and on the relaxation time of the velocity of the above-condensate recoil particles. A velocity distribution function in the beam of recoil atoms formed in the course of induced Rayleigh scattering is determined. It is shown that, under the typical experimental conditions, the characteristic width Δv/v of the recoil velocity distribution in this beam is on the order of 10−3 at a velocity v on the order of several centimeters per second.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, et al., Science 285, 571 (1999).

    Article  Google Scholar 

  2. M. Kozuma, Y. Suzuki, Y. Torii, et al., Science 286, 2309 (1999).

    Article  Google Scholar 

  3. S. Inouye, R. F. Low, S. Gupta, et al., Phys. Rev. Lett. 85, 4225 (2000).

    Article  ADS  Google Scholar 

  4. S. Inouye, T. Pfau, S. Gupta, et al., Nature 402, 641 (1999).

    Article  ADS  Google Scholar 

  5. M. G. Moore and P. Meystre, Phys. Rev. Lett. 83, 5202 (1999).

    Article  ADS  Google Scholar 

  6. J. M. Vogels, K. Xu, and W. Ketterler, Phys. Rev. Lett. 89, 020401-1 (2002).

    Google Scholar 

  7. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media, 2nd ed. (Nauka, Moscow, 1982; Pergamon, Oxford, 1984).

    Google Scholar 

  8. I. L. Fabelinskii, Molecular Scattering of Light (Nauka, Moscow, 1965; Plenum, New York, 1968).

    Google Scholar 

  9. A. Csordas, R. Graham, and P. Szepfalusy, Phys. Rev. A 54, R2543 (1996).

    Article  ADS  Google Scholar 

  10. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Reading, MA, 1975; Atomizdat, Moscow, 1980).

    Google Scholar 

  11. J. Javanainen, Phys. Rev. Lett. 75, 1927 (1995).

    Article  ADS  Google Scholar 

  12. J. Javanainen and J. Ruostekoski, Phys. Rev. A 52, 3033 (1995).

    Article  ADS  Google Scholar 

  13. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1978; Pergamon, New York, 1980).

    Google Scholar 

  14. E. P. Gross, Nuovo Cimento 20, 454 (1961); J. Math. Phys. 4, 195 (1963).

    MATH  Google Scholar 

  15. L. P. Pitaevskii, Zh. Éksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)].

    Google Scholar 

  16. F. Dalfovo, S. Giorgini, L. Pitaevskii, et al., Rev. Mod. Phys. 71, 463 (1999).

    Article  ADS  Google Scholar 

  17. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd ed. (Nauka, Moscow, 1980; Pergamon, Oxford, 1982).

    Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 3rd ed. (Nauka, Moscow, 1974; Pergamon, New York, 1977).

    Google Scholar 

  19. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976; Mir, Moscow, 1979).

    Google Scholar 

  20. W. Petrich, M. H. Anderson, J. R. Ensher, et al., Phys. Rev. Lett. 74, 3352 (1995).

    Article  ADS  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields, 5th ed. (Nauka, Moscow, 1967; Pergamon, Oxford, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Alekseev, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 131, No. 3, pp. 387–400.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseev, V.A. Rayleigh scattering from a trapped bose condensate and the corresponding recoil atom velocity distribution. J. Exp. Theor. Phys. 104, 343–356 (2007). https://doi.org/10.1134/S1063776107030016

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107030016

PACS numbers

Navigation