Skip to main content
Log in

Giant enhancement of noncontact friction between closely spaced bodies by dielectric films and two-dimensional systems

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of an external bias voltage and spatial variations of the surface potential on the damping of cantilever vibrations in an atomic force microscope (AFM) is considered. The damping is due to an electrostatic friction that arises due to dissipation of the energy of an electromagnetic field generated in the sample by oscillating static charges induced on the surface of the AFM probe tip by the bias voltage or spatial variations of the surface potential. A similar effect appears when the tip is oscillating in an electrostatic field created by charged defects present in the dielectric sample. The electrostatic friction is compared to the van der Waals (vdW) friction between closely spaced bodies, which is caused by a fluctuating electromagnetic field related to the quantum and thermal fluctuations of current density inside the bodies. It is shown that the electrostatic friction and the vdW friction can be strongly enhanced in the presence of dielectric films or two-dimensional (2D) structures—such as a 2D electron system or an incommensurate layer of adsorbed ions exhibiting acoustic oscillations—on the probe tip and sample surfaces. It is also shown that the damping of cantilever oscillations caused by the electrostatic friction in the presence of such 2D structures can have the same order of magnitude and the same dependence on the distance as observed in experiment by Stipe et al. [Phys. Rev. Lett. 87, 096801 (2001)]. At small distances, the vdW friction can be large enough to be measured in experiment. In interpreting the experimental data that obey a quadratic dependence on the bias voltage, one can reject a phonon mechanism according to which the friction depends on the fourth power of the voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, et al., Phys. Rev. Lett. 66, 1216 (1991); Surf. Sci. 263, 446 (1992).

    Article  ADS  Google Scholar 

  2. T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, et al., Phys. Rev. B 47, 12957 (1993); Physica B (Amsterdam) 197, 442 (1994).

    Article  ADS  Google Scholar 

  3. U. Sivan, P. M. Solomon, and H. Shtrikman, Phys. Rev. Lett. 68, 1196 (1992).

    Article  ADS  Google Scholar 

  4. I. Dorofeyev, H. Fuchs, G. Wenning, and B. Gotsmann, Phys. Rev. Lett. 83, 2402 (1999).

    Article  ADS  Google Scholar 

  5. B. Gotsmann and H. Fuchs, Phys. Rev. Lett. 86, 2597 (2001).

    Article  ADS  Google Scholar 

  6. B. C. Stipe, H. J. Mamin, T. D. Stowe, et al., Phys. Rev. Lett. 87, 096801 (2001).

    Google Scholar 

  7. H. J. Mamin and D. Rugar, Appl. Phys. Lett. 79, 3358 (2001).

    Article  ADS  Google Scholar 

  8. P. M. Hoffmann, S. Jeffery, J. B. Pethica, et al., Phys. Rev. Lett. 87, 265 502 (2001).

    Google Scholar 

  9. A. I. Volokitin and B. N. J. Persson, Phys. Rev. Lett. 91, 106101 (2003).

    Google Scholar 

  10. A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 68, 155 420 (2003).

    Google Scholar 

  11. A. I. Volokitin and B. N. J. Persson, Phys. Rev. Lett. 94, 86 104 (2005).

    Google Scholar 

  12. A. I. Volokitin, B. N. J. Persson, and H. Ueba, Phys. Rev. B 73, 165423 (2006).

    Google Scholar 

  13. S. Kuehn, R. F. Loring, and J. A. Marohn, Phys. Rev. Lett. 96, 156103 (2006).

    Google Scholar 

  14. D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Nature 430, 329 (2004).

    Article  ADS  Google Scholar 

  15. J. A. Sidles, J. L. Carbini, K. J. Bruland, et al., Rev. Mod. Phys. 67, 249 (1995).

    Article  ADS  Google Scholar 

  16. G. P. Berman, G. D. Doolen, P. C. Hammel, and V. I. Tsifrinovich, Phys. Rev. B 61, 14694 (2000).

    Google Scholar 

  17. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998); Sci. Am. 283, 62 (2000).

    Article  ADS  Google Scholar 

  18. U. Mohideen and A. Roy, Phys. Rev. Lett. 81, 4549 (1998).

    Article  ADS  Google Scholar 

  19. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10, 165 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  20. J. B. Pendry, J. Phys. C 9, 10301 (1997).

    Google Scholar 

  21. A. I. Volokitin and B. N. J. Persson, J. Phys.: Condens. Matter 11, 345 (1999); Phys. Low-Dimens. Semicond. Struct. 7/8, 17 (1998).

    Article  ADS  Google Scholar 

  22. E. V. Teodorovich, Proc. R. Soc. London, Ser. A 362, 71 (1978).

    Article  ADS  Google Scholar 

  23. J. Mahanty, J. Phys. B 13, 4391 (1980).

    Article  ADS  Google Scholar 

  24. G. V. Dedkov and A. A. Kyasov, Phys. Lett. A 259, 38 (1999).

    Article  ADS  Google Scholar 

  25. A. A. Kyasov and G. V. Dedkov, Surf. Sci. 463, 11 (2000).

    Article  ADS  Google Scholar 

  26. A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 65, 115 419 (2002).

    Google Scholar 

  27. W. L. Schaich and J. Harris, J. Phys. F 11, 65 (1981).

    Article  ADS  Google Scholar 

  28. L. S. Levitov, Europhys. Lett. 8, 499 (1989).

    ADS  Google Scholar 

  29. V. G. Polevoĭ, Zh. Éksp. Teor. Fiz. 98, 1990 (1990) [Sov. Phys. JETP 71, 1119 (1990)].

    Google Scholar 

  30. V. E. Mkrtchian, Phys. Lett. A 207, 299 (1995).

    Article  ADS  Google Scholar 

  31. B. N. J. Persson and Z. Zhang, Phys. Rev. B 57, 7327 (1998).

    Article  ADS  Google Scholar 

  32. E. M. Lifshitz, Zh. Éksp. Teor. Fiz. 29, 94 (1955) [Sov. Phys. JETP 2, 73 (1956)].

    Google Scholar 

  33. M. S. Tomassone and A. Widom, Phys. Rev. B 56, 4938 (1997).

    Article  ADS  Google Scholar 

  34. B. N. J. Persson and A. I. Volokitin, Phys. Rev. Lett. 84, 3504 (2000).

    Article  ADS  Google Scholar 

  35. J. R. Zurita-Sánchez, J. J. Greffet, and L. Novotny, Phys. Rev. A 69, 022 902 (2004).

    Google Scholar 

  36. A. A. Chumak, P. W. Milonni, and G. P. Berman, Phys. Rev. B 70, 085 407 (2004).

    Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media, 2nd ed. (Nauka, Moscow, 1982; Pergamon, Oxford, 1984).

    Google Scholar 

  38. CRC Handbook of Chemistry and Physics, Ed. by C. R. Lide (CRC Press, Boca Raton, Fla., 2001).

    Google Scholar 

  39. C. I. Sukenik, M. G. Boshier, D. Cho, et al., Phys. Rev. Lett. 70, 560 (1993).

    Article  ADS  Google Scholar 

  40. S. Hudlet, M. S. Jean, C. Guthmann, and J. Berger, Eur. Phys. J. B 2, 5 (1998).

    Article  ADS  Google Scholar 

  41. B. N. J. Persson, Phys. Rev. B 44, 3277 (1991).

    Article  ADS  Google Scholar 

  42. T. D. Stowe, T. W. Kenny, D. J. Thomson, and D. Rugar, Appl. Phys. Lett. 75, 2785 (1999).

    Article  ADS  Google Scholar 

  43. D. C. Langreth, Phys. Rev. B 39, 10020 (1989).

    Google Scholar 

  44. P. Senet, J. P. Toennis, and G. Witte, Chem. Phys. Lett. 299, 389 (1999).

    Article  ADS  Google Scholar 

  45. U. Hartmann, Phys. Rev. B 42, 15441 (1990); Phys. Rev. B 43, 2404 (1991).

    Google Scholar 

  46. P. Johansson and P. Apell, Phys. Rev. B 56, 4159 (1997).

    Article  ADS  Google Scholar 

  47. P. Debye, Polar Molecules (Chemical Catalog Co., New York, 1929; Gostekhizdat, Moscow, 1931), Chap. 5.

    MATH  Google Scholar 

  48. B. E. Sernelius, Surface Modes in Physics (Wiley-VCH, Berlin, 2001), Chap. 2.

    Book  Google Scholar 

  49. B. N. J. Persson, J. Chem. Phys. 115, 3840 (2001).

    Article  ADS  Google Scholar 

  50. B. N. J. Persson and R. Ryberg, Phys. Rev. B 32, 3586 (1985).

    Article  ADS  Google Scholar 

  51. F. A. McClintock and A. S. Argon, Mechanical Behavior of Material (Addison-Wesley, Reading, Mass., 1966), p. 475.

    Google Scholar 

  52. B. N. J. Persson, Sliding Friction: Physical Principle and Applications (Springer, Heidelberg, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.I. Volokitin, B.N.J. Persson, H. Ueba, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 131, No. 1, pp. 107–122.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volokitin, A.I., Persson, B.N.J. & Ueba, H. Giant enhancement of noncontact friction between closely spaced bodies by dielectric films and two-dimensional systems. J. Exp. Theor. Phys. 104, 96–110 (2007). https://doi.org/10.1134/S1063776107010116

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107010116

PACS numbers

Navigation