Skip to main content
Log in

Infrared spectroscopy of the intermediate-valence semiconductor YbB12

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamic conductivity and permittivity spectra of the intermediate-valence compound YbB12 are measured in the frequency range (6–104) cm−1 (quantum energy 0.75 meV-1.24 eV) at temperatures of 5–300 K. Analysis of the spectral singularities associated with the response of free charge carriers has made it possible for the first time to determine the temperature dependences of their microscopic parameters, viz., concentration, effective mass, relaxation frequency and time, mobility, and plasma frequency. It is shown that the relaxation frequency decreases upon cooling from 300 K to the coherence temperature T * = 70 K for YbB12, which is mainly associated with the phonon mechanism of scattering of charge carriers. For cooling below the coherence temperature T * = 70 K, the temperature dependence of the relaxation frequency for charge carriers of the Fermi-liquid type is found to be γ ∼ γ0 + T 2, while their effective mass and relaxation time increase, respectively, to m *(20 K) = 34m 0 (m 0 is the free electron mass) and τ(20 K) = 4 × 10−13 s, indicating the establishment of coherent scattering of carriers from localized magnetic moments of the f centers. At a temperature of T = 5 K, the conductivity spectrum contains an absorption line at a frequency of 22 cm−1 (2.7 meV); the origin of this line can be associated with the exciton-polaron bound state. Since such a state was observed earlier in other intermediate-valence semiconductors (such as SmB6, TmSe1−x Te, and (Sm, Y)S), it is probably typical of this class of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Wachter, Handbook of the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, L. Eyring, and S. Hufner (North-Holland, Amsterdam, 1994), Vol. 19.

    Google Scholar 

  2. L. Degiorgi, Rev. Mod. Phys. 71, 687 (1999).

    Article  ADS  Google Scholar 

  3. H. R. Ott and Z. Fisk, Handbook on the Physics and Chemistry of the Actinides, Ed. by A. J. Freeman and G. H. Lander (Elsevier, Amsterdam, 1987).

    Google Scholar 

  4. Z. Fisk, W. Hess, C. J. Pethick, et al., Science 239, 33 (1988).

    Article  ADS  Google Scholar 

  5. M. Dressel, N. Kasper, and K. Petukhov, Phys. Rev. Lett. 88, 186404 (2002).

    Google Scholar 

  6. B. Gorshunov, N. Sluchanko, and A. Volkov, Phys. Rev. B 59, 1808 (1999).

    Article  ADS  Google Scholar 

  7. N. E. Sluchanko, A. A. Volkov, V. V. Glushkov, et al., Zh. Éksp. Teor. Fiz. 115, 970 (1999) [JETP 88, 533 (1999)].

    Google Scholar 

  8. B. P. Gorshunov, A. S. Prokhorov, I. E. Spektor, et al., Zh. Éksp. Teor. Fiz. 128, 1047 (2005) [JETP 101, 913 (2005)].

    Google Scholar 

  9. T. Susaki, Y. Takeda, M. Arita, et al., Phys. Rev. Lett. 82, 992 (1999).

    Article  ADS  Google Scholar 

  10. S. Hiura, F. Iga, N. Takamoto, et al., Physica B (Amsterdam) 281–282, 271 (2000).

    Google Scholar 

  11. S. Kawasaki, N. Takamoto, Y. Narumi, et al., Physica B (Amsterdam) 281–282, 269 (2000).

    Google Scholar 

  12. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, 1991).

    Google Scholar 

  13. P. Alekseev, E. V. Nefeodova, U. Staub, et al., Phys. Rev. B 63, 064411 (2001).

  14. T. Susaki, A. Sekiyama, K. Kobayashi, et al., Phys. Rev. Lett. 77, 4269 (1996).

    Article  ADS  Google Scholar 

  15. F. Iga, Y. Takakuwa, N. Kasaya, et al., Solid State Commun. 50, 903 (1984).

    Article  Google Scholar 

  16. M. Kasaya, F. Iga, K. Negishi, et al., J. Magn. Magn. Mater. 31–34, 437 (1983).

    Article  Google Scholar 

  17. F. Iga, N. Shimizu, and T. Takabatake, J. Magn. Magn. Mater. 177–181, 337 (1998).

    Article  Google Scholar 

  18. F. Iga, M. Kasaya, and T. Kasuya, J. Magn. Magn. Mater. 52, 279 (1985).

    Article  ADS  Google Scholar 

  19. T. Susaki, Y. Takeda, M. Arita, et al., Phys. Rev. Lett. 82, 992 (1999).

    Article  ADS  Google Scholar 

  20. F. Iga, M. Kasaya, and T. Kasuya, J. Magn. Magn. Mater. 76–77, 156 (1988).

    Article  Google Scholar 

  21. T. Ekino, H. Umeda, F. Iga, et al., Physica B (Amsterdam) 261, 315 (1999).

    ADS  Google Scholar 

  22. T. Altshuler and M. S. Bresler, Physica B (Amsterdam) 315, 150 (2002).

    ADS  Google Scholar 

  23. M. Kasuya, F. Iga, and K. Negishi, J. Magn. Magn. Mater. 31–34, 437 (1983).

    Article  Google Scholar 

  24. M. Kasaya, F. Iga, M. Takigawa, and T. Kasuya, J. Magn. Magn. Mater. 47–48, 429 (1985).

    Article  Google Scholar 

  25. F. Iga, S. Hiura, J. Klijn, et al., Physica B (Amsterdam) 259–261, 312 (1999).

    Google Scholar 

  26. E. V. Nefeodova, P. A. Alekseev, J.-M. Mignot, et al., Phys. Rev. B 60, 13507 (1999).

    Article  ADS  Google Scholar 

  27. J.-M. Mignot, P. A. Alekseev, K. S. Nemkovski, et al., Phys. Rev. Lett. 94, 247204 (2005).

    Google Scholar 

  28. H. Okamura, M. Matsunami, T. Inaoka, et al., Phys. Rev. B 62, R13265 (2000).

    Article  ADS  Google Scholar 

  29. H. Okamura, S. Kimura, H. Shinozaki, et al., Phys. Rev. B 58, R7496 (1998).

    Article  ADS  Google Scholar 

  30. H. Okamura, T. Michizawa, T. Nanbe, et al., J. Phys. Soc. Jpn. 74, 1954 (2005).

    Article  ADS  Google Scholar 

  31. G. Kozlov and A. Volkov, in Millimeter and Submillimeter Spectroscopy of Solids, Ed. by G. Gruner (Springer, Berlin, 1998).

    Google Scholar 

  32. A. V. Sokolov, Optical Properties of Metals (Fizmatgiz, Moscow, 1961; Elsevier, New York, 1967).

    Google Scholar 

  33. T. Takabatake, F. Iga, T. Yoshino, et al., J. Magn. Magn. Mater. 177–178, 277 (1998).

    Article  Google Scholar 

  34. J. W. Allen and J. C. Mikkelsen, Phys. Rev. B 15, 2952 (1977).

    Article  ADS  Google Scholar 

  35. A. V. Puchkov, D. N. Basov, and T. Timusk, J. Phys.: Condens. Matter 8, 10049 (1996).

    Article  ADS  Google Scholar 

  36. M. Dressel and G. Gruner, Electrodynamics of Solids (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  37. T. Susaki, Y. Takeda, M. Arita, et al., Physica B (Amsterdam) 281–282, 282 (2000).

    Google Scholar 

  38. C. M. Warma and Y. Yafet, Phys. Rev. B 13, 2950 (1976).

    Article  ADS  Google Scholar 

  39. A. J. Millis and P. A. Lee, Phys. Rev. 35, 3394 (1987).

    Article  ADS  Google Scholar 

  40. N. E. Bickers, D. L. Cox, and J. W. Wilkins, Phys. Rev. B 36, 2036 (1987).

    Article  ADS  Google Scholar 

  41. R. T. Beach and R. W. Christy, Phys. Rev. B 16, 5277 (1977).

    Article  ADS  Google Scholar 

  42. G. R. Parkins, W. E. Lawrence, and R. W. Christy, Phys. Rev. B 23, 6408 (1981).

    Article  ADS  Google Scholar 

  43. K. A. Kikoin, J. Phys. C: Solid State Phys. 17, 6671 (1984).

    Article  ADS  Google Scholar 

  44. K. A. Kikoin and A. S. Mishenko, J. Phys. C: Solid State Phys. 2, 6491 (1990).

    Google Scholar 

  45. K. A. Kikoin and A. S. Mishchenko, Zh. Éksp. Teor. Fiz. 104, 3810 (1993) [JETP 77, 828 (1993)].

    Google Scholar 

  46. S. Curnoe and K. A. Kikoin, Phys. Rev. B 61, 15714 (2000).

    Article  ADS  Google Scholar 

  47. J. Neuenschwander and P. Wachter, Phys. Rev. B 41, 12693 (1990).

    Article  ADS  Google Scholar 

  48. P. A. ALekseev, J.-M. Mignot, E. V. Nefeodova, et al., JETP Lett. 79, 92 (2004).

    Article  Google Scholar 

  49. N. E. Sluchanko, V. V. Glushkov, B. P. Gorshunov, et al., Phys. Rev. B 61, 9906 (2000).

    Article  ADS  Google Scholar 

  50. N. E. Sluchanko, V. V. Glushkov, S. V. Demishev, et al., Phys. Rev. B 64, 153103 (2001).

    Google Scholar 

  51. T. S. Altshuler, Yu. V. Goryunov, M. S. Bresler, et al., Phys. Rev. B 68, 014425 (2003).

    Google Scholar 

  52. T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Butterworths, London, 1973; Mir, Moscow, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.P. Gorshunov, A.S. Prokhorov, I.E. Spektor, A.A. Volkov, M. Dressel, F. Iga, 2006, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 130, No. 6, pp. 1039–1046.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorshunov, B.P., Prokhorov, A.S., Spektor, I.E. et al. Infrared spectroscopy of the intermediate-valence semiconductor YbB12 . J. Exp. Theor. Phys. 103, 897–903 (2006). https://doi.org/10.1134/S1063776106120077

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776106120077

PACS numbers

Navigation