Skip to main content
Log in

Nanotube-based nanoelectromechanical systems

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Nanoelectromechanical systems based on multiwalled carbon nanotubes are considered. Control of motion and modes of operation of these systems are discussed. The structure of double-walled carbon nanotubes with atomic structural defects that can be used as bolt-nut pairs is analyzed. Energy barriers and threshold forces for relative motion of walls along and across the “thread” are computed for double-walled nanotubes with various types of defects. It is found that the qualitative characteristics of the thread are independent of the type of defect. Feasibility of fabricating double-walled nanotubes for use as bolt-nut pairs by self-organization is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Junno, K. Deppert, L. Montelius, and L. Samuelson, Appl. Phys. Lett. 66, 3627 (1995).

    Article  ADS  Google Scholar 

  2. M. Porto, M. Urbakh, and J. Klafter, Phys. Rev. Lett. 84, 6058 (2000).

    Article  ADS  Google Scholar 

  3. M. F. Yu, O. Lourie, M. J. Dyer, et al., Science 287, 637 (2000).

    Article  ADS  Google Scholar 

  4. M. F. Yu, B. I. Yakobson, and R. S. Ruoff, J. Phys. Chem. B 104, 8764 (2000).

    Article  Google Scholar 

  5. J. Cumings and A. Zettl, Science 289, 602 (2000).

    Article  ADS  Google Scholar 

  6. S. Iijima, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  7. Yu. E. Lozovik and A. M. Popov, Usp. Fiz. Nauk 167, 751 (1997) [Phys. Usp. 40, 717 (1997)].

    Google Scholar 

  8. A. V. Eletskiĭ, Usp. Fiz. Nauk 174, 1191 (2004) [Phys. Usp. 47, 1119 (2004)].

    Article  Google Scholar 

  9. M. M. J. Treasy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).

    Article  ADS  Google Scholar 

  10. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).

    Article  Google Scholar 

  11. A. Krishnan, E. Dujardin, T. W. Ebbesen, et al., Phys. Rev. B 58, 14013 (1998).

  12. P. Poncharat, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science 283, 1513 (1999).

    Article  ADS  Google Scholar 

  13. R. E. Tuzun, D. W. Noid, and B. G. Sumpter, Nanotechnology 6, 52 (1995).

    Article  ADS  Google Scholar 

  14. D. Srivastava, Nanotechnology 8, 186 (1997).

    Article  ADS  Google Scholar 

  15. L. Forro, Science 289, 5479 (2000).

    Article  Google Scholar 

  16. Q. Zheng and Q. Jiang, Phys. Rev. Lett. 88, 045503 (2002).

  17. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).

    Article  ADS  Google Scholar 

  18. S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).

    Article  ADS  Google Scholar 

  19. R. Tamura, Phys. Rev. B 64, 201404(R) (2001).

  20. T. Rueches, P. Kim, E. Joselevich, et al., Science 289, 94 (2000).

    Article  ADS  Google Scholar 

  21. M. Menon, A. N. Andriotis, D. Srivastava, et al., Phys. Rev. Lett. 91, 145501 (2003).

    Google Scholar 

  22. Yu. E. Lozovik, A. V. Minogin, and A. M. Popov, Phys. Lett. A 313, 112 (2003).

    Article  ADS  Google Scholar 

  23. Yu. E. Lozovik, A. V. Minogin, and A. M. Popov, Pis’ma Zh. Éksp. Teor. Fiz. 77, 759 (2003) [JETP Lett. 77, 631 (2003)].

    Google Scholar 

  24. Yu. E. Lozovik and A. M. Popov, Fullerenes Nanotubes Carbon Nanostruct. 12, 485 (2004).

    Article  Google Scholar 

  25. A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, et al., Nature 424, 408 (2003).

    Article  ADS  Google Scholar 

  26. B. Bourlon, D. C. Glatti, L. Forro, and A. Bachfold, Nano Lett. 4, 709 (2004).

    Article  ADS  Google Scholar 

  27. R. Saito, R. Matsuo, T. Kimura, et al., Chem. Phys. Lett. 348, 187 (2001).

    Article  ADS  Google Scholar 

  28. T. W. Ebbesen and P. M. Ajayan, Nature 358, 220 (1992).

    Article  ADS  Google Scholar 

  29. J. L. Hutchison, N. A. Kiselev, E. P. Krinichnaya, et al., Carbon 39, 761 (2001).

    Article  Google Scholar 

  30. L. Ci, Z. Pao, Z. Zhou, et al., Chem. Phys. Lett. 359, 63 (2002).

    Article  ADS  Google Scholar 

  31. W. Ren, F. Li, J. Chen, et al., Chem. Phys. Lett. 359, 196 (2002).

    Article  ADS  Google Scholar 

  32. S. Bandow, M. Takizawa, K. Hirahara, et al., Chem. Phys. Lett. 337, 48 (2001).

    Article  ADS  Google Scholar 

  33. J. Sloan, R. E. Dunin-Borkowski, J. L. Hutchison, et al., Chem. Phys. Lett. 316, 191 (2000).

    Article  ADS  Google Scholar 

  34. C. T. White, D. H. Robertson, and J. W. Mintmire, Phys. Rev. B 47, 5485 (1993).

    Article  ADS  Google Scholar 

  35. R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B 47, 16671 (1993).

    Google Scholar 

  36. A. N. Kolmogorov and V. H. Crespi, Phys. Rev. Lett. 85, 4727 (2000).

    Article  ADS  Google Scholar 

  37. T. Vukovič, M. Damnjanovič, and I. Miloševič, Physica E (Amsterdam) 16, 269 (2003).

    Google Scholar 

  38. A. V. Belikov, A. G. Nikolaev, Yu. E. Lozovik, and A. M. Popov, Chem. Phys. Lett. 385, 72 (2004).

    Article  ADS  Google Scholar 

  39. M. Damnjanovič, T. Vukovič, and I. Miloševič, Eur. Phys. J. B 25, 131 (2002).

    ADS  Google Scholar 

  40. E. Bichoutskaia, A. M. Popov, A. El-Barbary, et al., Phys. Rev. B 71, 113403 (2005).

    Google Scholar 

  41. A. V. Belikov, A. G. Nikolaev, Yu. E. Lozovik, and A. M. Popov, Fullerenes Nanotubes Carbon Nanostruct. 12, 117 (2004).

    Article  Google Scholar 

  42. O. Stephan, P. M. Ajayan, C. Colliex, et al., Science 266, 1683 (1994).

    Article  ADS  Google Scholar 

  43. D. L. Carroll, Ph. Redlich, X. Blase, et al., Phys. Rev. Lett. 81, 2332 (1998).

    Article  ADS  Google Scholar 

  44. K. Liu, Ph. Avonris, R. Martel, and W. K. Hsu, Phys. Rev. B 63, 161404(R) (2001).

  45. H. Ago, R. Azumi, S. Ohshima, et al., Chem. Phys. Lett. 383, 469 (2004).

    Article  ADS  Google Scholar 

  46. H. J. Choi, J. Ihm, S. G. Lonie, and M. L. Cohen, Phys. Rev. Lett. 84, 2917 (2000).

    Article  ADS  Google Scholar 

  47. H. F. Bettinger, T. Dumitrica, G. E. Scuceria, and B. I. Yakobson, Phys. Rev. B 65, 041406 (2002).

    Google Scholar 

  48. J.-Y. Li and J. Bernholc, Phys. Rev. B 47, 1708 (1993).

    Article  ADS  Google Scholar 

  49. P. E. Lammert, V. H. Crespi, and A. Rubio, Phys. Rev. Lett. 87, 136402 (2001).

    Google Scholar 

  50. A. H. Hevidomskyy, G. Csanyi, and M. C. Payne, Phys. Rev. Lett. 91, 105502 (2003).

    Google Scholar 

  51. R. J. Baieriee, S. B. Fagan, R. Mota, et al., Phys. Rev. B 64, 085413 (2001).

  52. S. P. Walch, Chem. Phys. Lett. 374, 501 (2003).

    Article  ADS  Google Scholar 

  53. K. A. Park, Y. S. Choi, and Y. H. Lee, Phys. Rev. B 68, 045429 (2003).

    Google Scholar 

  54. M. Damnjanovič, I. Miloševič, T. Vukovič, and R. Sredanovič, Phys. Rev. B 60, 2728 (1999).

    Article  ADS  Google Scholar 

  55. Yu. E. Lozovik, A. M. Popov, and A. V. Belikov, Fiz. Tverd. Tela (St. Petersburg) 45, 1333 (2003) [Phys. Solid State 45, 1396 (2003)].

    Google Scholar 

  56. L. X. Benedict, N. G. Chopra, M. L. Cohen, et al., Chem. Phys. Lett. 286, 490 (1998).

    Article  ADS  Google Scholar 

  57. J.-C. Charlier and J. P. Michenaud, Phys. Rev. Lett. 70, 1858 (1993).

    Article  ADS  Google Scholar 

  58. E. Bichoutskaia, A. M. Popov, M. I. Heggie, and Yu. E. Lozovik, Phys. Rev. B 73, 045435 (2006).

    Google Scholar 

  59. A. H. R. Palser, Phys. Chem. Chem. Phys. 1, 4459 (1999).

    Article  Google Scholar 

  60. J. P. Lu, X. P. Li, and R. M. Martin, Phys. Rev. Lett. 68, 1551 (1992).

    Article  ADS  Google Scholar 

  61. M. Damnjanovič, E. Dobardžič, I. Miloševič, et al., New J. Phys. 5, 148.1 (2003).

    Google Scholar 

  62. S. B. Legoas, V. R. Coluci, S. F. Braga, et al., Phys. Rev. Lett. 90, 055504 (2003).

    Google Scholar 

  63. S. B. Legoas, V. R. Coluci, S. F. Braga, et al., Nanotechnology 15, 184 (2004).

    Article  ADS  Google Scholar 

  64. W. Guo, Y. Guo, H. Gao, et al., Phys. Rev. Lett. 91, 125501 (2003).

  65. Y. Zhao, C.-C. Ma, G. Chen, and Q. Jiang, Phys. Rev. Lett. 91, 175504 (2003).

  66. J. L. Rivera, C. McCabe, and P. P. Cummings, Nano Lett. 3, 1001 (2003).

    Article  ADS  Google Scholar 

  67. J. W. Kang and H. J. Hwang, J. Appl. Phys. 96, 3900 (2004).

    Article  ADS  Google Scholar 

  68. Yu. E. Lozovik and A. M. Popov, Chem. Phys. Lett. 328, 355 (2000).

    Article  ADS  Google Scholar 

  69. Yu. E. Lozovik and A. M. Popov, Fiz. Tverd. Tela (St. Petersburg) 44, 180 (2002) [Phys. Solid State 44, 186 (2002)].

    Google Scholar 

  70. A. Burian, J. C. Dore, H. E. Fisher, and J. Sloan, Phys. Rev. B 59, 1665 (1999).

    Article  ADS  Google Scholar 

  71. F. J. Giessibl, Rev. Mod. Phys. 75, 949 (2003).

    Article  ADS  Google Scholar 

  72. R. Guttierrez, G. Fagas, G. Cuniberti, et al., Phys. Rev. B 65, 113410 (2002).

  73. D. H. Kim and K. J. Chang, Phys. Rev. B 66, 155402 (2002).

    Google Scholar 

  74. J. S. Murray, P. Lane, M. C. Concha, and P. Politzer, in Nano and Giga Challenges in Microelectronics: Book of Abstracts (Cracow, Poland, 2004), p. 175.

    Google Scholar 

  75. Y. G. Hwang and Y. H. Lee, J. Korean Phys. Soc. 42, 267 (2005).

    Google Scholar 

  76. N. Park, Y. Miyamoto, K. Lee, et al., Chem. Phys. Lett. 403, 135 (2005).

    Article  ADS  Google Scholar 

  77. D. L. Fan, F. Q. Zhu, R. C. Cammarata, and C. L. Chien, Phys. Rev. Lett. 94, 247208 (2005).

    Google Scholar 

  78. J. W. Kang and H. J. Hwang, Nanotechnology 15, 1633 (2004).

    Article  ADS  Google Scholar 

  79. D. M. Eigler and E. K. Schweizer, Nature 344, 525 (1990).

    Article  ADS  Google Scholar 

  80. M. F. Crommie, C. Plutz, and D. M. Eigler, Science 262, 218 (1993).

    Article  ADS  Google Scholar 

  81. R. Tenne, L. Margulis, M. Genut, and G. Hodes, Nature 360, 445 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.E. Lozovik, A.G. Nikolaev, A.M. Popov, 2006, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 130, No. 3, pp. 516–533.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozovik, Y.E., Nikolaev, A.G. & Popov, A.M. Nanotube-based nanoelectromechanical systems. J. Exp. Theor. Phys. 103, 449–462 (2006). https://doi.org/10.1134/S1063776106090159

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776106090159

PACS numbers

Navigation