Skip to main content
Log in

Magnetic characterization of a hydrogen phase trapped inside deep dislocation cores in a hydrogen-cycled PdH x (x ≈ 4.5 × 10−4) single crystal

  • Order, Disorder, and Phase Transitions in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The magnetic characterization of Pd single crystals deformed by cycling in a hydrogen atmosphere has been performed. Based on evidence obtained from thermal desorption analysis, it is shown that the condensed hydrogen phase formed inside deep dislocation cores in PdH x (x = H/Pd ≈ 4.5 × 10−4) is tightly bound with a Pd matrix. The activation energy of hydrogen desorption from these cores was found to be as high as e = 1.6eV/H-atom, suggesting the occurrence of a strong band overlapping between Pd and H atoms. SQUID measurements carried out in a weak magnetic field (H < 5.0 Oe) showed an anomalous diamagnetic contribution to the DC and AC magnetic susceptibilities of the PdH x sample at T < 30 K resulting in the presence of the hydrogen phase. It is suggested that the anomalous diamagnetic response in PdH x is caused by the presence of a hydrogen dominant phase, tightly bound with a Pd matrix inside the dislocation cores (nanotubes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hydrogen Storage “Think Tank” Report, March 14 (Washington, DC, 2003), http://www.eere.energy.gov/hydrogenfuelcels/pdfs/h2_storage_think_tank.html.

  2. F. Favier, E. C. Walter, M. P. Zach, et al., Science 293, 2227 (2001).

    Article  ADS  Google Scholar 

  3. N. W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004).

    Google Scholar 

  4. J. Nagamatsu, N. Nakagawa, T. Muranaka, et al., Nature 410, 63 (2001).

    Article  ADS  Google Scholar 

  5. B. J. Heuser and J. S. King, Met. Mater. Trans. A 29, 1594 (1998).

    Article  Google Scholar 

  6. W. C. Chen and B. J. Heuser, Phys. Rev. B 65, 014102 (2002).

    Google Scholar 

  7. R. Kirchheim, Acta Metall. 29, 845 (1981).

    Article  Google Scholar 

  8. M. Maxelon, A. Pundt, W. Pyckhout-Hintzen, et al., Acta Mater. 49, 2625 (2001).

    Article  Google Scholar 

  9. R. Kirchheim, Prog. Mater. Sci. 32, 262 (1988).

    Article  Google Scholar 

  10. G. Elsasser, K. M. Ho, C. T. Chan, and M. Fahnle, J. Phys.: Condens. Matter 4, 5207 (1992).

    Article  ADS  Google Scholar 

  11. N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).

    Article  ADS  Google Scholar 

  12. T. W. Barbee, A. Garcia, and M. L. Cohen, Nature 340, 369 (1989).

    Article  ADS  Google Scholar 

  13. C. F. Richardson and N. W. Ashcroft, Phys. Rev. Lett. 78, 118 (1997).

    Article  ADS  Google Scholar 

  14. E. G. Maksimov and D. Yu. Savrasov, Solid State Commun. 119, 569 (2001).

    Article  ADS  Google Scholar 

  15. B. Strizker and H. Wuhl, in Hydrogen in Metals II, Ed. by G. Alefeld and J. Volkel (Springer, Berlin, 1978), Top. Appl. Phys., Vol. 29, p. 290.

    Google Scholar 

  16. L. Schlapbach, I. Anderson, and J. P. Burger, in Materials Science and Technology, Ed. by K. H. Jurgen Buschow (Weinheim, New York, 1994), Vol. 3B, Part 2, p. 287.

    Google Scholar 

  17. C. Herrero and F. D. Manchester, Phys. Lett. A 86, 29 (1981).

    Article  ADS  Google Scholar 

  18. A. G. Lipson, B. J. Heuser, C. H. Castano, and A. Celic, Phys. Lett. A 339, 414 (2005).

    Article  ADS  Google Scholar 

  19. A. G. Lipson, B. J. Heuser, C. H. Castano, et al., Phys. Rev. B 72, 212507 (2005).

    Google Scholar 

  20. B. Strizker, Phys. Rev. Lett. 42, 1769 (1979).

    Article  ADS  Google Scholar 

  21. J. Miller and C. B. Satterthwaite, Phys. Rev. Lett. 34, 144 (1975).

    Article  ADS  Google Scholar 

  22. J. E. Schriber, J. M. Mintz, and W. Wall, Solid State Commun. 52, 837 (1984).

    Article  ADS  Google Scholar 

  23. R. Madec, B. Devinere, L. Kubin, et al., Science 301, 1879 (2003).

    Article  ADS  Google Scholar 

  24. A. P. Ramirez, K. C. Haddon, O. Zhou, et al., Science 265, 84 (1994).

    Article  ADS  Google Scholar 

  25. G. F. J. Garlick and A. F. Gibson, Proc. R. Soc. London, Ser. A 60, 574 (1948).

    Google Scholar 

  26. J. Won, R. P. Doerner, and R. W. Conn, J. Nucl. Mater. 256, 96 (1998).

    Article  Google Scholar 

  27. C. H. Castano, M.S. Thesis (Univ. of Illinois, Urbana, 2002).

  28. H. C. Jamieson and F. D. Manchester, J. Phys. F 2, 323 (1972).

    Article  ADS  Google Scholar 

  29. D. Mendoza, F. Morales, R. Escudero, and J. Walter, J. Phys: Condens. Matter. 11, L317 (1999).

    Article  ADS  Google Scholar 

  30. D. A. Van Leeuwen, J. M. Van Reitebeek, G. Schmidt, and L. J. De Jongh, Phys. Lett. A 170, 325 (1992).

    Article  ADS  Google Scholar 

  31. B. Meyer and B. Strizker, Phys. Rev. Lett. 48, 502 (1982).

    Article  ADS  Google Scholar 

  32. M. Wilkens, in Fundamental Aspects of Dislocation Theory, Ed. by J. A. Simmons, R. de Wit, and R. Bullough (National Bureau of Standards, Washington, 1970; Mir, Moscow, 1977), Vol. 2; NIST Spec. Publ., No. 317 (1969), p. 1195.

    Google Scholar 

  33. M. A. Krivoglaz, X-ray and Neutron Diffraction in Nonideal Crystals (Springer, Berlin, 1996).

    Google Scholar 

  34. D. Breuer and P. Klemanek, J. Appl. Crystallogr. 33, 1284 (2000).

    Article  Google Scholar 

  35. M. Suzuki, I. S. Suzuki, R. Lee, and J. Walter, Phys. Rev. B 66, 014533 (2002).

    Google Scholar 

  36. M. Suzuki, I. S. Suzuki, and J. Walter, J. Phys.: Condens. Matter 16, 903 (2004).

    Article  ADS  Google Scholar 

  37. T. Tsebro, O. E. Omelyanovskii, and A. P. Moravski, JETP Lett. 70, 462 (1999).

    Article  ADS  Google Scholar 

  38. A. K. Geim, S. V. Dubonos, J. G. S. Lok, et al., Nature 396, 144 (1998).

    Article  ADS  Google Scholar 

  39. S. Reidling, G. Bräuchle, R. Lucht, et al., Phys. Rev. B 49, 13283 (1994).

  40. S. Yuan, L. Ren, and F. Li, Phys. Rev. B 69, 092509 (2004).

  41. M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996; Atomizdat, Moscow, 1980).

    Google Scholar 

  42. R. A. Buhrman and W. P. Halperin, Phys. Rev. Lett. 30, 692 (1973).

    Article  ADS  Google Scholar 

  43. D. A. Papaconstantopoulos, B. M. Klein, E. N. Economou, and L. L. Boyer, Phys. Rev. B 17, 141 (1978).

    Article  ADS  Google Scholar 

  44. J. M. Rowe, J. J. Rush, J. E. Schriber, and J. M. Mintz, Phys. Rev. Lett. 57, 2955 (1986).

    Article  ADS  Google Scholar 

  45. W. L. McMillan, Phys. Rev. 167, 331 (1968).

    Article  ADS  Google Scholar 

  46. J. M. Nicol, J. J. Rush, and R. D. Kelley, Phys. Rev. B 36, 9315 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipson, A.G., Heuser, B.J., Castano, C.H. et al. Magnetic characterization of a hydrogen phase trapped inside deep dislocation cores in a hydrogen-cycled PdH x (x ≈ 4.5 × 10−4) single crystal. J. Exp. Theor. Phys. 103, 385–397 (2006). https://doi.org/10.1134/S1063776106090081

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776106090081

PACS numbers

Navigation