Skip to main content
Log in

Transverse electron transport in layered metallic systems: Giant magnetoresistance and injection of spins

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The distribution functions for electrons differing in the sign of the spin projection and belonging to different layers (ferromagnetic and nonmagnetic) are determined from the system of Boltzmann kinetic equations. These functions make it possible to derive integral equations for electrochemical potentials for arbitrary ratios of characteristic lengths (layer thicknesses and momentum-and diffusion mean free paths) and to describe transverse electron transport both in the bulk and in the surface regions of the multilayer structure. The expressions for the effective contact resistance are derived and the value of the transverse ohmic resistance of the structure is found, as well as its spin-dependent part determined by the values of injection factors γ. The values of nonequilibrium spin polarizations, which are also connected with coefficients γ, are determined. The values of γ are calculated for various relations between the characteristic parameters of the given system and for various types of magnetic order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 1 (2004).

    Article  Google Scholar 

  2. N. F. Mott, Proc. R. Soc. London, Ser. A 153, 699 (1936).

    Article  ADS  Google Scholar 

  3. E. I. Rashba, Phys. Rev. B 62, R16267 (2000).

  4. E. I. Rashba, Eur. Phys. J. B 29, 513 (2002).

    Article  ADS  Google Scholar 

  5. P. R. Hammar, B. R. Bennet, M. J. Yang, and M. Johnson, Phys. Rev. Lett. 83, 203 (1999).

    Article  ADS  Google Scholar 

  6. S. Gardelis, C. G. Smith, C. H. W. Barnes, et al., Phys. Rev. B 60, 7764 (1999).

    Article  ADS  Google Scholar 

  7. G. Schmidt, D. Ferrand, L. Mollenkamp, et al., Phys. Rev. B 62, R4790 (2000).

    Article  ADS  Google Scholar 

  8. T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).

    Article  ADS  Google Scholar 

  9. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1960), Vol. 2.

    MATH  Google Scholar 

  10. B. Davison, Neutron Transport Theory (Clarendon, Oxford, 1957; Atomizdat, Moscow, 1960).

    MATH  Google Scholar 

  11. R. Landauer, IBM J. Res. Dev. 1, 2323 (1957).

    Article  MathSciNet  Google Scholar 

  12. G. E. W. Bauer, Phys. Rev. Lett. 69, 1676 (1992).

    Article  ADS  Google Scholar 

  13. K. M. Schep, P. J. Kelly, and G. E. W. Bauer, Phys. Rev. Lett. 74, 586 (1995).

    Article  ADS  Google Scholar 

  14. Yu. V. Sharvin, Zh. Éksp. Teor. Fiz. 48, 984 (1965) [JETP Lett. 21, 655 (1965)].

    Google Scholar 

  15. A. M. Bratkovsky, Phys. Rev. B 56, 2544 (1997).

    Article  ADS  Google Scholar 

  16. S. Zhang and P. M. Levy, Phys. Rev. B 57, 5336 (1998).

    Article  ADS  Google Scholar 

  17. M. D. Stiles and D. R. Penn, Phys. Rev. B 61, 3200 (2000).

    Article  ADS  Google Scholar 

  18. K. M. Schep, J. B. A. N. van Hoof, P. J. Kelly, et al., Phys. Rev. B 56, 10305 (1997).

    Google Scholar 

  19. K. Xia, P. J. Kelly, G. E. W. Bauer, et al., Phys. Rev. B 63, 046407 (2001).

  20. A. Shpiro and P. M. Levy, Phys. Rev. B 63, 014419 (2000).

  21. B. Laikhtman and S. Luryi, Phys. Rev. B 49, 17177 (1994).

  22. V. Ya. Kravchenko and E. I. Rashba, Phys. Rev. B 67, R12131 (2003).

  23. Yu. V. Gulyaev, P. E. Zil’berman, É. M. Épshteĭn, and R. J. Elliott, Pis’ma Zh. Éksp. Teor. Fiz. 76, 189 (2002) [JETP Lett. 76, 155 (2002)].

    Google Scholar 

  24. V. Ya. Kravchenko, Zh. Éksp. Teor. Fiz. 121, 703 (2002) [JETP 94, 603 (2002)].

    Google Scholar 

  25. K. Fuchs, Proc. Cambridge Philos. Soc. 34, 100 (1938).

    Article  Google Scholar 

  26. H. Sondheimer, Adv. Phys. 1, 1 (1952).

    Article  MATH  ADS  Google Scholar 

  27. A. G. Aronov, Pis’ma Zh. Éksp. Teor. Fiz. 24, 37 (1976) [JETP Lett. 24, 32 (1976)].

    Google Scholar 

  28. V. V. Osipov and A. M. Bratkovsky, Phys. Rev. B 70, 205312 (2004).

    Google Scholar 

  29. V. V. Osipov and A. M. Bratkovsky, Phys. Rev. B 72, 115322 (2005).

    Google Scholar 

  30. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 4th ed. (Fizmatgiz, Moscow, 1963; Academic, New York, 1980).

    Google Scholar 

  31. L. Brillouin, Wave Propagation in Periodic Structures (Dover, New York, 1953; L. Brillouin and M. Parodi, Inostrannaya Literatura, Moscow, 1959).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.Ya. Kravchenko, 2006, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 129, No. 5, pp. 955–980.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kravchenko, V.Y. Transverse electron transport in layered metallic systems: Giant magnetoresistance and injection of spins. J. Exp. Theor. Phys. 102, 836–861 (2006). https://doi.org/10.1134/S1063776106050165

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776106050165

PACS numbers

Navigation