Skip to main content
Log in

On the relation between thermally activated and magnetically stimulated processes during dislocation movement in InSb crystals in a magnetic field

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that, in contrast to conventional mobility of dislocations in InSb crystals, which is characterized by a thermally activated temperature dependence of velocity (v ∝ exp(-U/kT), where U is the activation energy), relaxation displacements of dislocation in the same crystals in a magnetic field in the absence of external load are described by a more complex temperature dependence. The V(T) dependence in the temperature range 120–250°C studied here exhibits a tendency to linearization in the ln v vs. 1/T coordinates only in its low-temperature part and rapidly attains saturation upon an increase in temperature. The observed decrease in the thermal sensitivity of relaxation mobility of dislocations in the magnetic field upon heating is interpreted in the framework of the model describing the detachment of a dislocation from a point defect as a sequence of two processes: (i) magnetically stimulated lowering of the barrier, UU′ (over time τsp of the spin evolution in the system) and (ii) expectation of thermal fluctuation (over a time τth ∝ exp(U′/kT)). Thus, at low temperatures, we have

, and the total time before detachment amounts to τth + τsp ≈ τth. On the contrary, at high temperatures, we have

, and τth + τsp ≈ τsp (i.e., the motion becomes athermal). It is shown that this model correctly describes the results of measurements and makes it possible to separate the effects. In particular, it is found that the barrier height decreases from the activation energy U = 0.8 eV under a load of 10 MPa to U′ = 0.25 eV in a magnetic field of B = 0.8 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Al’shits, E. V. Darinskaya, T. M. Perekalina, and A. A. Urusovskaya, Fiz. Tverd. Tela (Leningrad) 29, 467 (1987) [Sov. Phys. Solid State 29, 265 (1987)].

    Google Scholar 

  2. V. I. Al’shits, E. V. Darinskaya, and E. A. Petrzhik, Fiz. Tverd. Tela (Leningrad) 33, 3001 (1991) [Sov. Phys. Solid State 33, 1694 (1991)].

    Google Scholar 

  3. V. I. Al’shits, E. V. Darinskaya, I. V. Gektina, and F. F. Lavrent’ev, Kristallografiya 35, 1014 (1990) [Sov. Phys. Crystallogr. 35, 597 (1990)].

    Google Scholar 

  4. V. I. Al’shits, E. V. Darinskaya, and E. A. Petrzhik, Fiz. Tverd. Tela (St. Petersburg) 34, 155 (1992) [Sov. Phys. Solid State 34, 81 (1992)]; 35, 320 (1993) [35, 162 (1993)].

    Google Scholar 

  5. V. I. Al’shits, E. V. Darinskaya, M. V. Koldaeva, and E. A. Petrzhik, Kristallografiya 48, 826 (2003) [Crystallogr. Rep. 48, 768 (2003)].

    Google Scholar 

  6. A. A. Urusovskaya, V. I. Al’shits, A. E. Smirnov, and N. N. Bekkauer, Kristallografiya 48, 855 (2003) [Crystallogr. Rep. 48, 796 (2003)].

    Google Scholar 

  7. Yu. I. Golovin, Fiz. Tverd. Tela (St. Petersburg) 46, 769 (2004).

    Google Scholar 

  8. R. B. Morgunov, Usp. Fiz. Nauk 174, 2 (2004) [Phys. Usp. 47, 125 (2004)].

    Article  Google Scholar 

  9. E. V. Darinskaya and M. V. Koldaeva, Pis’ma Zh. Éksp. Teor. Fiz. 70, 226 (1999) [JETP Lett. 70, 228 (1999)].

    Google Scholar 

  10. Yu. I. Golovin and R. B. Morgunov, Pis’ma Zh. Éksp. Teor. Fiz. 61, 583 (1995) [JETP Lett. 61, 596 (1995)].

    Google Scholar 

  11. A. A. Urusovskaya, V. I. Al’shits, A. E. Smirnov, and N. N. Bekkauer, Pis’ma Zh. Éksp. Teor. Fiz. 65, 470 (1997) [JETP Lett. 65, 497 (1997)].

    Google Scholar 

  12. B. I. Smirnov, N. N. Peschanskaya, and V. I. Nikolaev, Fiz. Tverd. Tela (St. Petersburg) 43, 2154 (2001) [Phys. Solid State 43, 2250 (2001)].

    Google Scholar 

  13. N. A. Tyapunina, V. L. Krasnikov, and É. P. Belozerova, Kristallografiya 45, 156 (2000) [Crystallogr. Rep. 45, 150 (2000)].

    ADS  Google Scholar 

  14. O. I. Datsko, Fiz. Tverd. Tela (St. Petersburg) 44, 289 (2002) [Phys. Solid State 44, 300 (2002)].

    Google Scholar 

  15. A. E. Smirnov and A. A. Urusovskaya, Fiz. Tverd. Tela (Leningrad) 29, 852 (1987) [Sov. Phys. Solid State 29, 485 (1987)].

    Google Scholar 

  16. Yu. I. Golovin, R. B. Morgunov, D. V. Lopatin, and A. A. Baskakov, Phys. Status Solidi A 160, 3 (1997).

    Article  ADS  Google Scholar 

  17. Yu. I. Golovin and R. B. Morgunov, Pis’ma Zh. Éksp. Teor. Fiz. 58, 189 (1993) [JETP Lett. 58, 191 (1993)].

    Google Scholar 

  18. R. B. Morgunov and A. A. Baskakov, Fiz. Tverd. Tela (St. Petersburg) 43, 1632 (2001) [Phys. Solid State 43, 1700 (2001)].

    Google Scholar 

  19. E. V. Darinskaya, E. A. Petrzhik, S. A. Erofeeva, and V. P. Kisel’, Pis’ma Zh. Éksp. Teor. Fiz. 70, 298 (1999) [JETP Lett. 70, 309 (1999)].

    Google Scholar 

  20. E. V. Darinskaya, E. A. Petrzhik, Yu. M. Ivanov, et al., Phys. Status Solidi C 2, 1873 (2005).

    Article  ADS  Google Scholar 

  21. Yu. I. Golovin, R. B. Morgunov, A. A. Baskakov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 114 (1999) [JETP Lett. 69, 127 (1999)].

    Google Scholar 

  22. A. A. Skvortsov, A. M. Orlov, and L. I. Gonchar, Zh. Éksp. Teor. Fiz. 120, 134 (2001) [JETP 93, 117 (2001)].

    Google Scholar 

  23. V. A. Makara, L. P. Steshenko, N. Ya. Gorid’ko, et al., Fiz. Tverd. Tela (St. Petersburg) 43, 462 (2001) [Phys. Solid State 43, 480 (2001)].

    Google Scholar 

  24. M. V. Badylevich, Yu. L. Iunin, V. V. Kveder, et al., Zh. Éksp. Teor. Fiz. 124, 664 (2003) [JETP 97, 601 (2003)].

    Google Scholar 

  25. M. V. Badylevich, V. V. Kveder, V. I. Orlov, and Yu. A. Osip’yan, Phys. Status Solidi C 2, 1869 (2005).

    Article  ADS  Google Scholar 

  26. S. A. Erofeeva, Philos. Mag. 70, 943 (1994).

    ADS  Google Scholar 

  27. V. B. Pariiskiĭ, A. I. Landau, and V. I. Startsev, Fiz. Tverd. Tela (Leningrad) 5, 1377 (1963) [Sov. Phys. Solid State 5, 1002 (1963)].

    Google Scholar 

  28. V. I. Al’shits, E. V. Darinskaya, and M. V. Koldaeva, Fiz. Tverd. Tela (St. Petersburg) 43, 1635 (2001) [Phys. Solid State 43, 1703 (2001)].

    Google Scholar 

  29. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967; Atomizdat, Moscow, 1972).

    Google Scholar 

  30. B. V. Petukhov, Fiz. Met. Metalloved. 56, 1177 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Alshits, E.V. Darinskaya, E.A. Petrzhik, S.A. Erofeeva, 2006, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 129, No. 4, pp. 735–741.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alshits, V.I., Darinskaya, E.V., Petrzhik, E.A. et al. On the relation between thermally activated and magnetically stimulated processes during dislocation movement in InSb crystals in a magnetic field. J. Exp. Theor. Phys. 102, 646–651 (2006). https://doi.org/10.1134/S1063776106040145

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776106040145

PACS numbers

Navigation