Skip to main content
Log in

Multiphonon generation during photodissociation of slow Landau-Pekar polarons

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The spectra of the low-temperature photodissociation (photoionization) of Landau-Pekar polarons are calculated using the theory of quantum-coherent states and a new method of variation with respect to the parameters of phonon vacuum deformation. It is shown that the final polaron states upon photodissociation may have different numbers of phonons produced in a single dissociation event and different momenta of charge carriers. The spectrum of optical absorption related to the photodissociation of polarons exhibits a superposition of bands corresponding to various numbers of phonons formed as a result of dissociation of a single polaron. Due to a large width of the energy region corresponding to the final states of charge carriers, the halfwidth of each band is on the order of the energy of polaron coupling and is much greater than the phonon energy. For this reason, the individual phonon bands exhibit strong overlap. The very broad and, probably, structureless band formed as a result of the superposition of all these components begins at an energy equal to the sum of the polaron coupling energy (E p) and the phonon energy. This band has a maximum at a frequency of about 5.6E p/ħ and a halfwidth on the order of 5.6E p/ħ at a unit effective mass (m* = m e) of band electrons. For an effective charge carrier mass within m* = (1–3)m e, the energy of the polaron band maximum can be estimated as 5E p with an error of about 10%, and the halfwidth falls within 3.4E p < ħΩ1/2 < 5.6E p. The multiphonon character of this band is related to a decay of the phonon condensate after the escape of charge carrier from a polaron. Such polarons are likely to be observed in the spectra of complex metal oxides, including high-temperature superconductors. Examples of such polaron bands in the reported absorption and photoconductivity spectra of nonstoichiometric cuprates, manganites, nickelates, and titanates are presented. A theory of the formation of Landau-Pekar polarons with the participation of branches of the polarization oscillations of the medium is developed. It is shown that, under certain conditions, such a multiphonon-dressed polaron can possess a coupling energy on the order of 0.2–0.3 eV, so that the maximum of the corresponding absorption band may occur at 1–1.5 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fröhlich, Adv. Phys. 3, 325 (1954).

    Article  MATH  ADS  Google Scholar 

  2. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, 2nd ed. (Nauka, Moscow, 1979; Springer, New York, 1984).

    Google Scholar 

  3. S. I. Pekar, Investigations on Electron Theory of Ion Crystals (GITTL, Moscow, 1951; Report AEC-tr-5575, U.S. Atomic Energy Commission, 1963); L. Landau, Phys. Z. Sowjet. 3, 664 (1933).

    Google Scholar 

  4. D. Emin, Phys. Rev. B 48, 1369 (1993).

    Article  ADS  Google Scholar 

  5. W. Heitler, The Quantum Theory of Radiation, 3rd ed. (Clarendon, Oxford, 1954; Inostrannaya Literatura, Moscow, 1956).

    MATH  Google Scholar 

  6. J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics (Benjamin, New York, 1968; Mir, Moscow, 1970).

    Google Scholar 

  7. H. P. Haken, Quantum Field Theory of Solids (North-Holland, Amsterdam, 1977; Nauka, Moscow, 1980).

    Google Scholar 

  8. R. P. Feynman, R. W. Hellworth, C. K. Iddings, and P. L. Platzman, Phys. Rev. 127, 1004 (1962).

    Article  MATH  ADS  Google Scholar 

  9. A. S. Davydov, Quantum Mechanics, 2nd ed. (Nauka, Moscow, 1973; Pergamon, Oxford, 1976).

    Google Scholar 

  10. E. Kartheuser, R. Evrard, and J. Devreese, Phys. Rev. Lett. 22, 94 (1969); J. Devreese, J. De Sitter, and M. Goovaerts, Phys. Rev. B 5, 2367 (1972).

    Article  ADS  Google Scholar 

  11. J. Orenstein et al., Phys. Rev. B 36, 8892 (1987).

    Article  ADS  Google Scholar 

  12. S. Etemad et al., Phys. Rev. B 37, 3396 (1988).

    Article  ADS  Google Scholar 

  13. Y. H. Kim, C. M. Foster, A. J. Heeger, et al., Phys. Rev. B 38, 6478 (1988).

    Article  ADS  Google Scholar 

  14. D. Mihailovich, C. M. Foster, K. Voss, and A. J. Heeger, Phys. Rev. B 42, 7989 (1990).

    Article  ADS  Google Scholar 

  15. X.-X. Bi and P. C. Eklund, Phys. Rev. Lett. 70, 2625 (1993); X.-X. Bi, P. C. Eklund, and J. M. Honig, Phys. Rev. B 48, 3470 (1993).

    Article  ADS  Google Scholar 

  16. C. C. Homes, J. H. Tranquada, Q. Li, et al., Phys. Rev. B 67, 184516 (2003).

    Article  ADS  Google Scholar 

  17. C. A. Kuntcher et al., Phys. Rev. B 67, 035105 (2003).

  18. Ch. Hartinger et al., Phys. Rev. B 69, 100403(R) (2004).

  19. V. N. Bogomolov and V.P. Zhuze, Fiz. Tverd. Tela (Leningrad) 8, 2390 (1966) [Sov. Phys. Solid State 8, 1904 (1966)].

    Google Scholar 

  20. V. N. Bogomolov, E. K. Kudinov, and Yu. A. Firsov, Fiz. Tverd. Tela (Leningrad) 9, 3175 (1967) [Sov. Phys. Solid State 9, 2502 (1968)].

    Google Scholar 

  21. A. E. Myasnikova, Phys. Lett. A 291, 439 (2001).

    Article  ADS  Google Scholar 

  22. A. E. Myasnikova, Phys. Rev. B 52, 10457 (1995).

    Article  ADS  Google Scholar 

  23. A. É. Myasnikova and É. N. Myasnikov, Zh. Éksp. Teor. Fiz. 116, 1386 (1999) [JETP 89, 746 (1999)].

    Google Scholar 

  24. V. Gurevich, I. Lang, and Yu. Firsov, Fiz. Tverd. Tela (St. Petersburg) 4, 918 (1962) [Sov. Phys. Solid State 4, 1252 (1962)].

    Google Scholar 

  25. J. Tempere and J. T. Devreese, Phys. Rev. B 64, 104504 (2001).

    Google Scholar 

  26. M. Mortier, B. Pirion, J. Y. Buzare, et al., Phys. Rev. B 67, 115126 (2003).

  27. Y.-R. Chen, V. Perebeinos, and P. B. Allen, Phys. Rev. B 65, 205207 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.N. Myasnikov, A.E. Myasnikova, Z.P. Mastropas, 2006, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 129, No. 3, pp. 548–565.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myasnikov, E.N., Myasnikova, A.E. & Mastropas, Z.P. Multiphonon generation during photodissociation of slow Landau-Pekar polarons. J. Exp. Theor. Phys. 102, 480–496 (2006). https://doi.org/10.1134/S1063776106030113

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776106030113

PACS numbers

Navigation