Skip to main content
Log in

Phase memory effects in probe-field spectroscopy of two-level systems at low collision frequencies

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The absorption (amplification) spectrum of a weak probe field by two-level atoms located in a strong resonant laser field and colliding with buffer-gas atoms is analyzed theoretically. The analysis is performed for low collision frequencies compared to the Doppler absorption linewidth (low gas pressure) and with allowance made for an arbitrary change in the phase of the radiation-induced dipole moment at elastic collisions between gas particles. The phase memory effects have been found to lead to a strong qualitative and quantitative transformation of the probe-field spectrum even at rare collisions, when the well-known Dicke manifestation mechanism of the phase memory effects (the removal of Doppler broadening due to the restriction of the spatial particle motion by collisions) is inoperative. The strong influence of the phase memory effects on the spectral resonances at low gas pressures stems from the fact that the phase-conserving collisions change the velocity dependence of the partial refractive index n(v) (the refractive index for particles moving with velocity v).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Rautian, G. I. Smirnov, and A. M. Shalagin, Non-linear Resonances in Atomic and Molecular Spectra (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  2. A. K. Popov, Introduction in Nonlinear Spectroscopy (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  3. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, New York, 1981; Nauka, Moscow, 1985).

    Google Scholar 

  4. V. S. Letokhov and V. P. Chebotaev, High-Resolution Nonlinear Laser Spectroscopy (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  5. A. I. Parkhomenko and A. M. Shalagin, Zh. Éksp. Teor. Fiz. 127, 320 (2005) [JETP 100, 283 (2005)].

    Google Scholar 

  6. A. I. Parkhomenko and A. M. Shalagin, Zh. Éksp. Teor. Fiz. 128, 1134 (2005) [JETP 101, 989 (2005)].

    Google Scholar 

  7. S. Chapman and T. G. Cowling, Mathematical Theory of Non-Uniform Gases, 2nd ed. (Cambridge Univ. Press, Cambridge, 1952; Inostrannaya Literatura, Moscow, 1960).

    Google Scholar 

  8. S. G. Rautian and I. I. Sobel’man, Zh. Éksp. Teor. Fiz. 41, 456 (1961) [Sov. Phys. JETP 14, 328 (1962)].

    Google Scholar 

  9. O. Kocharovskaya, Phys. Rep. 219, 175 (1992).

    Article  ADS  Google Scholar 

  10. A. K. Popov, Izv. Ross. Akad. Nauk, Ser. Fiz. 60, 99 (1996).

    Google Scholar 

  11. J. Mompart and R. Corbalan, J. Opt. B: Quantum Semiclass. Opt. 2, R7 (2000).

    Article  ADS  Google Scholar 

  12. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997; Fizmatlit, Moscow, 2003).

    Google Scholar 

  13. O. G. Bykova, V. V. Lebedeva, N. G. Bykova, and A. V. Petukhov, Opt. Spektrosk. 53, 171 (1982) [Opt. Spectrosc. 53, 101 (1982)].

    Google Scholar 

  14. Yu. I. Belousov, E. V. Podivilov, M. G. Stepanov, and D. A. Shapiro, Zh.Éksp. Teor. Fiz. 118, 328 (2000) [JETP 91, 287 (2000)].

    Google Scholar 

  15. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun, 2nd ed. (Dover, New York, 1971; Nauka, Moscow, 1979).

    Google Scholar 

  16. F. Kh. Gel’mukhanov and A. I. Parkhomenko, Phys. Scr. 44, 477 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.I. Parkhomenko, A.M. Shalagin, 2006, published in Zhurnal Éksperimentals’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 129, No. 3, pp. 465–476.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkhomenko, A.I., Shalagin, A.M. Phase memory effects in probe-field spectroscopy of two-level systems at low collision frequencies. J. Exp. Theor. Phys. 102, 406–416 (2006). https://doi.org/10.1134/S1063776106030046

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776106030046

PACS numbers

Navigation