Skip to main content
Log in

Investigation of the Ultrafast Magnetic Dynamics in Co/Pt Multilayer Structures and Examples of Other Studies at the European XFEL Facility

  • NANOMATERIALS AND CERAMICS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The European X-ray Free-Electron Laser (EuXFEL) Facility is the leading international scientific center for studying the structure and properties of materials using coherent X-rays with high temporal and spatial resolution. The results of the collaboration of the EuXFEL experts and the researchers of the ITMO University in 2015–2022 are briefly described. The unique possibilities of the EuXFEL are demonstrated by an example of studying the ultrafast magnetic dynamics by the researchers of the ITMO University in 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. B. Koopmans, G. Malinowski, F. Dalla Longa, et al., Nat. Mater. 9, 259 (2010). https://doi.org/10.1038/nmat2593

    Article  ADS  Google Scholar 

  2. A. Kirilyuk, A. V. Kimel, and T. Rasing, Rep. Prog. Phys. 76, 026501 (2013). https://doi.org/10.1088/0034-4885/76/2/026501

  3. E. Beaurepaire, J. Merle, A. Daunois, et al., Phys. Rev. Lett. 76, 4250 (1996). https://doi.org/10.1103/PhysRevLett.76.4250

    Article  ADS  Google Scholar 

  4. C. D. Stanciu, F. Hansteen, A. V. Kimelet, et al., Phys. Rev. Lett. 99, 047601 (2007). https://doi.org/10.1103/PhysRevLett.99.047601

  5. Y. Zhang, S. Chen, Y. Cai, et al., Engineering (2020). https://doi.org/10.1016/j.eng.2020.06.019

  6. C.-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, et al., Science 345, 1337 (2014). https://doi.org/10.1126/science.1253493

    Article  ADS  Google Scholar 

  7. R. John, M. Berritta, D. Hinzke, et al., Sci. Rep. 7, 4114 (2017). https://doi.org/10.1038/s41598-017-04167-w

    Article  ADS  Google Scholar 

  8. K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, et al., Phys. Rev. Lett. 103, 117201 (2009). https://doi.org/10.1103/PhysRevLett.103.117201

  9. S. Mangin, M. Gottwald, C. H. Lambert, et al., Nat. Mater. 13 (3), 286 (2014). https://doi.org/10.1038/nmat3864

    Article  ADS  Google Scholar 

  10. I. Radu, K. Vahaplar, C. Stamm, et al., Nature 472 (7342), 205 (2011). https://doi.org/10.1038/nature09901

    Article  ADS  Google Scholar 

  11. T. A. Ostler, J. Barker, R. F. L. Evans, et al., Nat. Commun. 3 (1), 1 (2012). https://doi.org/10.1038/ncomms1666

    Article  Google Scholar 

  12. J. Gorchon, Y. Yang, J. Bokor, et al., Phys. Rev. B 94, 020409 (2016). https://doi.org/10.1103/PhysRevB.94.020409

  13. M. O. A. Ellis, E. E. Fullerton, and R. W. Chantrell, Sci. Rep. 6, 30522 (2016). https://doi.org/10.1038/srep30522

    Article  ADS  Google Scholar 

  14. E. Hadri, M. S. Pirro, P. Lambert, et al., Phys Rev. B 94 (6), 064412 (2016). https://doi.org/10.1103/PhysRevB.94.064412

  15. R. Medapalli, D. Afanasiev, D. K. Kim, et al., Phys. Rev. B 96 (22), 224421 (2017). https://doi.org/10.1103/PhysRevB.96.224421

  16. M. S. El Hadri, M. Hehn, S. Mangin, et al., J. Phys. D: Appl. Phys. 51, 215054 (2018). https://doi.org/10.1088/1361-6463/aabf2b

  17. B. Pfau, S. Schaffert, L. Müller, et al., Nat. Commun. 3, 1100 (2012). https://doi.org/10.1038/ncomms2108

    Article  ADS  Google Scholar 

  18. E. Iacocca, T.-M. Liu, A. H. Reid, et al., Nat. Commun. 10, 1756 (2019). https://doi.org/10.1038/s41467-019-09577-0

    Article  ADS  Google Scholar 

  19. M. Porro, L. Andricek, S. Aschauer, et al., IEEE Trans. Nucl. Sci. 68, 1334 (2021). https://doi.org/10.1109/TNS.2021.3076602

    Article  ADS  Google Scholar 

  20. T. Sant, D. Ksenzov, E. V. Skorb, et al., Sci. Rep. 7, 15064 (2017). https://doi.org/10.1039/c6cp07456a

    Article  ADS  Google Scholar 

  21. N. Imoro, V. V. Shilovskikh, P. V. Nesterov, et al., ACS Omega 6 (27), 17267 (2021). https://doi.org/10.1021/acsomega.1c01124

    Article  Google Scholar 

  22. V. V. Shilovskikh, A. A. Timralieva, E. V. Skorb, et al., Chem. A Eur. J. 26 (70), 16603 (2020). https://doi.org/10.1002/chem.202002947

    Article  Google Scholar 

  23. V. Shilovskikh, A. Timraliev, E. V. Skorb, et al., Appl. Magn. Res. (2020). https://doi.org/10.1007/s00723-020-01254-6

  24. N. Orekhov, N. Kondratyuk, E. V. Skorb, et al., Cryst. Growth. Des. 21 (4), 1984 (2021). https://doi.org/10.1021/acs.cgd.0c01285

    Article  Google Scholar 

  25. C. A. Mancuso, D. D. Hickstein, P. Grychtol, et al., Phys. Rev. A 91, 031402 (2015). https://doi.org/10.1103/PhysRevA.91.031402

  26. D. B. Milošević and W. Becker, Phys. Rev. A 93, 063418 (2016). https://doi.org/10.1103/PhysRevA.93.063418

  27. C. A. Mancuso, D. D. Hickstein, K. M. Dorney, et al., Phys. Rev. A 93, 053406 (2016). https://doi.org/10.1103/PhysRevA.93.053406

  28. D. V. Karlovets, V. G. Serbo, and A. Surzhykov, Phys. Rev. A 104 (2), 023101 (2021). https://doi.org/10.1103/PhysRevA.104.023101

  29. A. Volotka, V. G. Serbo, D. Samoilenko, S. Fritzsche, and A. Surzhykov, Annalen der Physik 534 (3), 2100252 (2022). https://doi.org/10.1002/andp.202100252

  30. P. Polimeno, A. Magazzu, O. M. Marago, et al., J. Quant. Spec. Radiat. Trans. 218, 131 (2018). https://doi.org/10.1016/j.jqsrt.2018.07.013

    Article  ADS  Google Scholar 

  31. J. Müller, M. Scheer, and P. Schmid, Phys. Rev. Lett. 111, 034801 (2013). https://doi.org/10.1103/PhysRevLett.111.034801

Download references

ACKNOWLEDGMENTS

We are grateful to E.A. Viktorov for valuable remarks in the discussion of the concept of the paper; to A.V. Kovalev and E.O. Tikhodeeva for their help in the preparation of materials; and to E.V. Skorb, V.V. Shilovskikh, M.V. Baidakova, D.V. Potorochin, D.V. Karlovets, and A.V. Volotka, who took part in designing and carrying out the scientific projects of the ITMO University at the Megascience EuXFEL facility.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2021-1349).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Yu. Lobanova or A. E. Romanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobanova, E.Y., Suturin, S.M., Molodtsov, S.L. et al. Investigation of the Ultrafast Magnetic Dynamics in Co/Pt Multilayer Structures and Examples of Other Studies at the European XFEL Facility. Crystallogr. Rep. 68, 621–627 (2023). https://doi.org/10.1134/S1063774523700293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523700293

Navigation