Skip to main content
Log in

Optical and X-ray Spectroscopy of Color Centers in Cerium-Doped Yttrium‒Aluminum Garnet

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Yttrium‒aluminum garnet single crystals, including cerium-doped ones, have been grown from melt by Bagdasarov’s method. A comparative spectroscopy study of garnet single crystals and specially prepared ceramics of the same composition has been carried out. The comparative analysis suggests that an increase in the concentration of cerium ions in the garnet crystals improves the spectral-luminescence and scintillation characteristics of the latter and facilitates effective quenching of the substrate luminescence. Ways of optimizing the synthesis conditions to improve the efficiency of scintillators based on {Y\(_{{1-x}}\)Cex}3Al5O12 garnet crystal have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. A. Kaminskii, Laser Photonics Rev. 1 (2), 93 (2007). https://doi.org/10.1002/lpor.200710008

    Article  ADS  Google Scholar 

  2. https://www.crystals.saint-gobain.com/garnet-substrates

  3. T. Yanagida, H. Takahashi, T. Ito, et al., IEEE Trans. Nucl. Sci. 52 (5), 1836 (2005). https://doi.org/10.1109/TNS.2005.856757

    Article  ADS  Google Scholar 

  4. E. Mihóková, M. Nikl, J. A. Mareš, et al., J. Lumin. 126, 77 (2007). https://doi.org/10.1016/j.jlumin.2006.05.004

    Article  Google Scholar 

  5. P. Lecoq, A. Gektin, and M. Korzhik, Inorganic Scintillators for Detector Systems (Springer, Cham, 2017), p. 1.

    Book  Google Scholar 

  6. R. C. Linares, Solid State Commun. 2, 229 (1964). https://doi.org/10.1016/0038-1098(64)90369-2

    Article  ADS  Google Scholar 

  7. A. Wagner, B. Ratzker, S. Kalabukhov, et al., Ceram. Int. 45, 12279 (2019). https://doi.org/10.1016/j.ceramint.2019.03.141

    Article  Google Scholar 

  8. B. V. Mill’, Magnetic and Crystallochemical Studies of Ferrites (Izd-vo MGU, Moscow, 1971) [in Russian].

    Google Scholar 

  9. M. Allibert, C. Chatillon, J. Mareschal, and F. Lissalde, J. Cryst. Growth 23, 289 (1974). https://doi.org/10.1016/0022-0248(74)90071-2

    Article  ADS  Google Scholar 

  10. M. Kh. Ashurov, Yu. Voronko, V. V. Osiko, et al., Phys. Status Solidi A 42 (1), 101 (1977). https://doi.org/10.1002/pssa.2210420108

    Article  ADS  Google Scholar 

  11. A. A. Kaminskii, A. V. Butashin, K. S. Aleksandrov, and L. N. Bezmaternykh, Crystallogr. Rep. 47 (2), 308 (2002).

    Article  ADS  Google Scholar 

  12. Kh. S. Bagdasarov, High-Temperature Crystallization from Melt (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  13. Ch. R. Varney and F. A. Selim, AIMS Mater. Sci. 2 (4), 560 (2015). https://doi.org/10.3934/matersci.2015.4.560

    Article  Google Scholar 

  14. A. A. Kaminsky, L. K. Aminov, V. L. Ermolaev, et al., Physics and Spectroscopy of Laser Crystals (Moscow, Nauka, 1986).

    Google Scholar 

  15. A. H. Lumpkin, A. B. Garson, and M. A. Anastasio, Rev. Sci. Instrum. 89 (7), 073704 (2018). https://doi.org/10.1063/1.5027499

  16. V. B. Kvartalov, V. M. Kanevskii, V. A. Fedorov, and A. V. Butashin, Advances in Chemistry and Chemical Technology: Collected Works, Vol. XXXVI, No. 7 (Izd-vo RKhTU im. D.I. Mendeleeva, Moscow, 2022).

  17. P. A. Rodnyi, S. B. Mikhrin, A. N. Mishin, and A. V. Sidorenko, IEEE Trans. Nucl. Sci. 48 (6), 2340 (2001). https://doi.org/10.1109/23.983264

    Article  ADS  Google Scholar 

  18. G. Zhao, X. Zeng, J. Xu, et al., J. Cryst. Growth 253, 290 (2003). https://doi.org/10.1016/S0022-0248(03)01017-0

    Article  ADS  Google Scholar 

  19. A. G. Petrosyan, Kh. S. Bagdasarov, T. N. Butaeva, et al., Kristallografiya 20 (5), 1089 (1975).

    Google Scholar 

  20. S. V. Nizhankovsky, A. Ya. Dan’ko, V. M. Puzikov, et al., Funct. Mater. 15 (4), 546 (2008).

    Google Scholar 

  21. F. Bantien, P. Albers, and G. Huber, J. Lumin. 36, 363 (1987). https://doi.org/10.1016/0022-2313(87)90153-0

    Article  Google Scholar 

  22. Ch. Lin, Bull. Minèral. 104, 218 (1981).

    Article  Google Scholar 

  23. Yu. Zorenko, A. Voloshinovskii, V. Savchyn, et al., Phys. Status Solidi B 244 (6), 2180 (2007). https://doi.org/10.1002/pssb.200642431

    Article  ADS  Google Scholar 

Download references

Funding

This study was carried out within the State assignment of the Ministry of Science and Higher Education of the Russian Federation for the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences in the part concerning the growth of garnet crystals and preparation of the samples for investigations and crystal chemical analysis, and within the Agreement with the Ministry of Science and Higher Education of the Russian Federation of October 12, 2021, no. 075-15-2021-1362 in the part concerning the spectroscopy study and characterization of the obtained materials as elements of scintillation detectors of ionizing radiation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Muslimov.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butashin, A.V., Venevtsev, I.D., Fedorov, V.A. et al. Optical and X-ray Spectroscopy of Color Centers in Cerium-Doped Yttrium‒Aluminum Garnet. Crystallogr. Rep. 68, 594–599 (2023). https://doi.org/10.1134/S1063774523700268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523700268

Navigation