Skip to main content
Log in

Comparative Study of Siderites of Hydrothermal, Sedimentary, and Bacterial Origin by Physical Methods

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The physicochemical properties of siderites (FeCO3) of different origin have attracted attention due to challenges in the diagnostics with the aim of evaluating the involvement of bacteria in the formation of iron-rich sedimentary deposits. A comparative study of siderites of chemical and bacterial origin was performed by Mӧssbauer spectroscopy, X-ray diffraction, and scanning electron microscopy for the purpose of determining the possible characteristics, which will allow the identification of biogenic siderite. It was found that all the characterized siderites have significant differences in the crystal morphology associated with the physicochemical conditions of their formation. Siderites of bacterial origin are characterized by a smaller crystal size compared to siderites of hydrothermal or sedimentary origin. The inhomogeneity of the nearest environment of the iron atoms, which was found for siderites of bacterial origin and which is manifested in the Mӧssbauer spectra as a larger width of the quadrupole shift distribution, can be used as a diagnostic indication of biogenic siderites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. V. Cerantola, C. McCammon, I. Kupenko, I. Kantor, C. Marini, M. Wilke, L. Ismailova, N. Solopova, A. Chumakov, S. Pascarelli, and L. Dubrovinsky, Am. Mineral. 100 (11–12), 2670 (2015). https://doi.org/10.2138/am-2015-5319

    Article  ADS  Google Scholar 

  2. A. G. Bulakh, A. A. Zolotarev, and V. G. Krivovichev, General Mineralogy (Akademiya, Moscow, 2008) [in Russian].

    Google Scholar 

  3. I. V. Kudelina, N. P Galyanina, and T. V. Leont’eva, General Geology (Orenburg Gos. Univ., Orenburg, 2016) [in Russian].

    Google Scholar 

  4. P. S. Mozley, Geology 17 (8), 704 (1989). https://doi.org/10.1130/0091-7613(1989)017<0704:RBDEAT>2.3.CO;2

    Article  ADS  Google Scholar 

  5. V. N. Kholodov and G. Y. Butuzova, Lithol. Miner. Resour. 39 (5), 389 (2004).

    Article  Google Scholar 

  6. A. Piepenbrock, U. Dippon, K. Porsch, E. Appel, and A. Kappler, Geochim. Cosmochim. Acta 75 (22), 6844 (2011). https://doi.org/10.1016/j.gca.2011.09.007

    Article  ADS  Google Scholar 

  7. D. R. Lovley, Iron Bominer. 151 (1991). https://doi.org/10.1007/978-1-4615-3810-3_11

  8. C. Markovski, J. M. Byrne, E. Lalla, A. D. Lozano-Gorrín, et al., Icarus 296, 49 (2017). https://doi.org/10.1016/j.icarus.2017.05.017

    Article  ADS  Google Scholar 

  9. J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, et al., Geochim. Cosmochim. Acta 62 (19–20), 3239 (1998). https://doi.org/10.1016/S0016-7037(98)00243-9

  10. R. K. Kukkadapu, J. M. Zachara, J. K. Fredrickson, and D. W. Kennedy, Am. Mineral. 90 (2–3), 510 (2005). https://doi.org/10.2138/am.2005.1727

    Article  ADS  Google Scholar 

  11. D. G. Zavarzina, V. V. Kevbrin, T. N. Zhilina, et al., Microbiology 80 (6), 743 (2011). https://doi.org/10.1134/S0026261711060233

    Article  Google Scholar 

  12. N. I. Chistyakova, V. S. Rusakov, A. A. Shapkin, et al., AIP Conf. Proc. 1489 (1), 95 (2012). https://doi.org/10.1063/1.4759477

    Article  ADS  Google Scholar 

  13. N. I. Chistyakova, V. S. Rusakov, and D. G. Zavarzina, Hyperfine Interactions (C) 397 (2002). https://doi.org/978-94-010-0281-3_98

  14. A. A. Shapkin, N. I. Chistyakova, D. G. Zavarzina, et al., Solid State Phenom. 233, 766 (2015). https://doi.org/10.4028/www.scientific.net/SSP.233-234.766

    Article  Google Scholar 

  15. T. Alekseeva, P. Kabanov, A. Alekseev, et al., Clays Clay Miner. 64 (5), 677 (2016). https://doi.org/10.1346/CCMN.2016.064044

    Article  ADS  Google Scholar 

  16. N. I. Chistyakova et al., Czechoslov. J. Phys. 55 (7), 781 (2005). https://doi.org/10.1007/s10582-005-0080-4

    Article  ADS  Google Scholar 

  17. T. N. Zhilina, D. G. Zavarzina, E. N. Detkova, et al., IJSEM 65, Pt. 8, 2432 (2015). https://doi.org/10.1099/ijs.0.000278

    Article  Google Scholar 

  18. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489 (1), 178 (2012). https://doi.org/10.1063/1.4759488

    Article  ADS  Google Scholar 

  19. E. B. Haney, R. L. Haney, L. R. Hossner, et al., J. Environ. Qual. 35 (3), 871 (2006). https://doi.org/10.2134/jeq2005.0187

    Article  Google Scholar 

  20. K. Pye, Mar. Geol. 56 (1–4), 1 (1984). https://doi.org/10.1016/0025-3227(84)90002-1

    Article  ADS  Google Scholar 

  21. D. L. Nagy, K. Kulcsar, G. Ritter, et al., J. Phys. Chem. Solids 36 (7–8), 759 (1975). https://doi.org/10.1016/0022-3697(75)90099-2

    Article  ADS  Google Scholar 

  22. J. G. Stevens, A. M. Khasanov, J. W. Miller, et al., Mössbauer Mineral Handbook (Mössbauer Effect Data Center, The University of North Carolina, Asheville, NC, 2005).

    Google Scholar 

  23. Y. Takashima and S. Ohashi, Bull. Chem. Soc. Jpn. 41 (1), 88 (1968). https://doi.org/10.1246/bcsj.41.88

    Article  Google Scholar 

  24. D. L. Nagy, K. Kulcsár, H. Spiering, R. Zimmerman, et al., J. Phys. Colloq. 35 (C6), C6-385 (1974). https://doi.org/10.1051/jphyscol:1974672

    Article  Google Scholar 

  25. D. W. Forester and N. C. Koon, J. Appl. Phys. 40 (3), 1316 (1969). https://doi.org/10.1063/1.1657649

    Article  ADS  Google Scholar 

  26. H. N. Ok, Phys. Rev. 185 (2), 472 (1969). https://doi.org/10.1103/PhysRev.185.472

    Article  ADS  Google Scholar 

  27. H. Spiering, D. L. Nagy, and R. Zimmermann, Chem. Phys. 18 (3–4), 243 (1976). https://doi.org/10.1016/0301-0104(76)87105-4

    Article  Google Scholar 

  28. N. I. Chistyakova, D. G. Zavarzina, and V. S. Rusakov, BRAS Phys. 67 (9), 1493 (2003).

    Google Scholar 

  29. Y. Roh, C. L. Zhang, H. Vali, et al., Clays Clay Miner. 51 (1), 83 (2003). https://doi.org/10.1346/CCMN.2003.510110

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Experimental studies were partially performed on the equipment acquired with the funding of the Moscow State University Program of Development and was also supported by the Czech Science Foundation (grant no. 19-02584S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Chistyakova.

Ethics declarations

The authors declare no conflict of interest, financial or otherwise.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chistyakova, N.I., Antonova, A.V., Rusakov, V.S. et al. Comparative Study of Siderites of Hydrothermal, Sedimentary, and Bacterial Origin by Physical Methods. Crystallogr. Rep. 68, 459–467 (2023). https://doi.org/10.1134/S1063774523700177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523700177

Navigation