Skip to main content
Log in

Shifts of the Kiessig Oscillations and Faraday Rotation for X-ray Reflectivity from a Magnetized Film

  • DIFFRACTION AND SCATTERING OF IONIZING RADIATIONS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Appearance of the refraction effects and Faraday rotation of the plane of polarization of linearly polarized X rays has been analyzed for transmission and reflection at grazing incidence angles for a resonant film including the X-ray magnetic or Mössbauer scattering. It is shown that, when the magnetization is oriented along the radiation beam direction, magnetic additives to the susceptibility do not affect the phase shifts between the waves reflected from the surface and the substrate; however, they induce “orthogonal polarization” in the reflected beam, which corresponds to rotation of the plane of polarization. Rotation of the plane of polarization is maximum for the critical angle of total external reflection; it is characterized by an oscillating dependence on the grazing angle, which can be used in future to vary the polarization state of X-ray beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. H. Kiessig, Ann. Phys. (Berlin, Ger.) 402, 715 (1931). https://doi.org/10.1002/andp.19314020607

  2. A. Segmüller, Thin Solid Films 18 (2), 287 (1973). https://doi.org/10.1016/0040-6090(73)90107-7

    Article  ADS  Google Scholar 

  3. M. A. Andreeva, A. Smekhova, R. A. Baulin, et al., J. Synchrotron Radiat. 28 (5), 1535 (2021). https://doi.org/10.1107/S1600577521007694

    Article  Google Scholar 

  4. A. G. Smekhova, M. A. Andreeva, E. E. Odintsova, et al., Crystallogr. Rep. 55 (5), 854 (2010).

    Article  ADS  Google Scholar 

  5. B. P. Toperverg, H. J. Lauter, and V. V. Lauter-Pasyuk, Physica B 356, 1 (2005). https://doi.org/10.1016/j.physb.2004.10.035

    Article  ADS  Google Scholar 

  6. F. I. Fedorov, Theory of Girotropy (Nauka i Tekhnika, Minsk, 1976) [in Russian].

    Google Scholar 

  7. S.A. Stepanov and S. K. Sinha, Phys. Rev. B 61, 15302 (2000). https://doi.org/10.1103/PhysRevB.61.15302

    Article  ADS  Google Scholar 

  8. J. Kuneš, P. M. Oppeneer, H.-Ch. Mertins, et al., Phys. Rev. B 64, 174417 (2001). https://doi.org/10.1103/PhysRevB.64.174417

  9. H. C. Mertins, S. Valencia, A. Gaupp, et al., Appl. Phys. A 80, 1011 (2005). https://doi.org/10.1007/s00339-004-3129-5

    Article  ADS  Google Scholar 

  10. J. B. Kortright, M. Rice, M. Kim, et al., J. Magn. Magn. Mater. 191, 79 (1999). https://doi.org/10.1016/S0304-8853(98)00344-8

    Article  ADS  Google Scholar 

  11. J. B. Kortright, M. Rice, and R. Carr, Phys. Rev. B 51, 10240 (1995). https://doi.org/10.1103/PhysRevB.51.10240

    Article  ADS  Google Scholar 

  12. J. B. Kortright and S.-K. Kim, Phys. Rev. B 62, 12216 (2000). https://doi.org/10.1103/PhysRevB.62.12216

    Article  ADS  Google Scholar 

  13. H.-Ch. Mertins, F. Schäfers, A. Gaupp, et al., Phys. Rev. B 61, R874 (2000). https://doi.org/10.1103/PhysRevB.61.R874

    Article  ADS  Google Scholar 

  14. P. Imbert, Phys. Lett. 8, 956 (1964). https://doi.org/10.1016/0031-9163(64)90724-3

    Article  Google Scholar 

  15. P. Imbert, J. Phys. 27, 429 (1966). https://doi.org/10.1051/jphys:01966002707-8042900

    Article  Google Scholar 

  16. U. Gonser and U. Housley, Phys. Lett. A 26, 157 (1968). https://doi.org/10.1016/0375-9601(68)90053-4

    Article  ADS  Google Scholar 

  17. R. M. Housley and U. Gonser, Phys. Rev. 171, 480 (2000). https://doi.org/10.1103/physrev.171.480

    Article  ADS  Google Scholar 

  18. O. C. Kistner, Phys. Rev. Lett. 19 (15), 872 (1967). https://doi.org/10.1103/PhysRevLett.19.872

    Article  ADS  Google Scholar 

  19. M. Blume and O. C. Kistner, Phys. Rev. 171, 417 (1968). https://doi.org/10.1103/PhysRev.171.417

    Article  ADS  Google Scholar 

  20. G. B. Airy, Philos. Mag. 2, 20 (1833). https://doi.org/10.1080/14786443308647959

    Article  Google Scholar 

  21. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969).

    MATH  Google Scholar 

  22. L. G. Parratt, Phys. Rev. 95, 359 (1954). https://doi.org/10.1103/PhysRev.95.359

    Article  ADS  Google Scholar 

  23. I. W. Hamley and J. S. Pedersen, J. Appl. Crystallogr. 27, 29 (1994). https://doi.org/10.1107/S0021889893006260

    Article  Google Scholar 

  24. M. A. Andreeva and Yu. L. Repchenko, Crystallogr. Rep. 58 (7), 1037 (2013).

    Article  ADS  Google Scholar 

  25. M. A. Andreeva and A. G. Smekhova, Izv. Akad. Nauk, Ser. Fiz. 72 (5), 693 (2008).

    Google Scholar 

  26. M. A. Andreeva, X-ray Radiation in Study of Magnetism: A Textbook for Postgraduates and Students of Senior Courses, Ed. by A. S. Ilyushin (Izd-vo MGU, Moscow, 2018) [in Russian].

    Google Scholar 

  27. M. A. Andreeva and B. Lindgren, JETP Lett. 76 (12), 704 (2002).

    Article  ADS  Google Scholar 

  28. M. A. Andreeva, R. A. Baulin, and Yu. L. Repchenko, J. Synchrotron Radiat. 26, 483 (2019). https://doi.org/10.1107/S1600577518018398

    Article  Google Scholar 

  29. T. S. Toellner, W. Sturhahn, R. Röhlsberger, et al., Phys. Rev. Lett. 74, 3475 (1995). https://doi.org/10.1103/PhysRevLett.74.3475

    Article  ADS  Google Scholar 

  30. M. A. Andreeva and B. Lindgren, Phys. Rev. B 72, 125422 (2005). https:// doi.org/https://doi.org/10.1103/PhysRevB.72.125422

  31. R. Rüffer, C. R. Phys. 9, 595 (2008). https://doi.org/10.1016/j.crhy.2007.06.003

    Article  ADS  Google Scholar 

  32. M. A. Andreeva, Nuclear Resonance Spectroscopy of Condensed Matter. Part 2: Mössbauer Study on Synchrotron Radiation. A Textbook for Masters and Postgraduates, Ed. by A. S. Ilyushin (Izd-vo MGU, Moscow, 2019) [in Russian].

    Google Scholar 

  33. R. Rüffer and A. I. Chumakov, Modern Mössbauer Spectroscopy. Topics in Applied Physics, Ed. by Y. Yoshida and G. Langouche (Springer Nature, Singapore, 2021). https://doi.org/10.1007/978-981-15-9422-9

Download references

Funding

This study was supported in part by the Ministry of Science and Higher Education of the Russian Federation (grant no. 075-15-2021-1353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Andreeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, M.A., Baulin, R.A. Shifts of the Kiessig Oscillations and Faraday Rotation for X-ray Reflectivity from a Magnetized Film. Crystallogr. Rep. 68, 380–387 (2023). https://doi.org/10.1134/S1063774523700062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523700062

Navigation