Skip to main content
Log in

Controlled Hyperbolic Structure of Metamaterial for Subdiffraction Visualization in the Terahertz Range

  • METAMATERIALS AND PHOTONIC CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

An improved design of a controlled cylindrical hyperlens based on alternating layers of indium antimonide and silicon for imaging with a subwave resolution in the terahertz range is proposed. A possibility of dynamic tuning of hyperlens in a wide frequency range at small variations is temperature is demonstrated by numerical simulation. Distinctive features of this structure are small sizes, low loss in the insulator, and the ability of forming images not only in the near-field zone but also in the far-field zone, which was confirmed by plotting directional patterns. Based on the proposed computer model, a cylindrical hyperlens can be fabricated using conventional methods of deposition or electron-beam evaporation. The results obtained may contribute to improvement of the resolution of imaging systems in the terahertz range and development of modulators of hyperbolic metamaterials and sensors in the terahertz range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. I. B. Vendik, D. S. Kozlov, I. V. Munina, et al., Elektron. Mikroelektron. SVCh 1, 101 (2016).

    Google Scholar 

  2. J. Buron, D. Petersen, P. Boggild, et al., Nano Lett. 12 (10), 5074 (2012). https://doi.org/10.1021/nl301551a

    Article  CAS  PubMed  ADS  Google Scholar 

  3. J. Zeitler, P. Taday, D. Newnham, et al., J. Pharm. Pharmacol. 59 (2), 209 (2007). https://doi.org/10.1211/jpp.59.2.0008

    Article  CAS  PubMed  Google Scholar 

  4. E. V. Yakovlev, K. I. Zaytsev, I. N. Dolganova, et al., IEEE Trans. Terahertz Sci. Technol. 5 (5), 810 (2015). https://doi.org/10.1109/TTHZ.2015.2460671

    Article  CAS  ADS  Google Scholar 

  5. M. Yamashita, C. Otani, K. Kawase, et al., Appl. Phys. Lett. 94 (19), 191104 (2009). https://doi.org/10.1063/1.3133346

  6. A. Huber, F. Keilmann, J. Wittborn, et al., Nano Lett. 8 (11), 3766 (2008). https://doi.org/10.1021/nl802086x

    Article  CAS  PubMed  ADS  Google Scholar 

  7. O. Smolyanskaya, N. Chernomyrdin, A. Konovko, et al., Prog. Quantum Electron. 62, 1 (2018). https://doi.org/10.1016/j.pquantelec.2018.10.001

    Article  ADS  Google Scholar 

  8. W. L. Chan, J. Deibel, and D. M. Mittleman, Rep. Prog. Phys. 70 (8), 1325 (2007). https://doi.org/10.1088/0034-4885/70/8/R02

    Article  ADS  Google Scholar 

  9. P. De Maagt, International Workshop on Antenna Technology: Small and Smart Antennas Metamater and Appl (2007). https://doi.org/111.10.1109/IWAT.2007.370091

  10. B. Hecht, B. Sick, U. P. Wild, et al., J. Chem. Phys. 112 (18), 7761 (2000). https://doi.org/10.1063/1.481382

    Article  CAS  ADS  Google Scholar 

  11. P. Huo, S. Zhang, Y. Liang, et al., Adv. Opt. Mater. 7 (14), 1801616 (2019). https://doi.org/10.1002/adom.201801616

  12. J. Rho, Z. Ye, Y. Xiong, et al., Nature Commun. 1 (1), 143 (2010). https://doi.org/10.1038/ncomms1148

    Article  CAS  ADS  Google Scholar 

  13. H. Zhang, Z. Jiao, and E. Mcleod, Appl. Opt. 59 (22), 64 (2020). https://doi.org/10.1364/AO.391952

    Article  Google Scholar 

  14. J. A. Roberts, S.-J. Yu, P.-H. Ho, et al., Nano Lett. 19 (5), 3131 (2019). https://doi.org/10.1021/acs.nanolett.9b00552

    Article  CAS  PubMed  ADS  Google Scholar 

  15. X. Wang, H. Wang, J. Jian, et al., Nano Lett. 20 (9), 6614 (2020). https://doi.org/10.1021/acs.nanolett.0c02440

    Article  CAS  PubMed  ADS  Google Scholar 

  16. S. Prayakarao, B. Mendoza, A. Devine, et al., Appl. Phys. Lett. 109 (6), 061105 (2016). https://doi.org/10.1063/1.4954382

  17. L. Liu, K. Liu, Z. Zhaoet, et al., RSC Adv. 6 (98), 95973 (2016). https://doi.org/10.1039/C6RA17098F

    Article  CAS  ADS  Google Scholar 

  18. K. V. Baryshnikova, S. S. Kharintsev, P. A. Belov, et al., Usp. Fiz. Nauk 192 (4), 386 (2022). https://doi.org/10.3367/UFNr.2021.03.038952

    Article  Google Scholar 

  19. A. V. Shchelokova, P. V. Kapitanova, and P. A. Belov, Usp. Fiz. Nauk 192 (4), 386 (2022).

    Article  Google Scholar 

  20. K. L. Koshelev and A. A. Bogdanov, Phys. Rev. B 92 (8), 085305 (2015). https://doi.org/10.1103/PhysRevB.92.085305

  21. Z. Jacob, L. V. Alekseyev, and E. Narimanov, Opt. Express 14 (18), 8247 (2006). https://doi.org/10.1364/OE.14.008247

    Article  PubMed  ADS  Google Scholar 

  22. P. A. Belov, Y. Zhao, S. Tse, et al., Phys. Rev. B 77 (19), 193108 (2008). https://doi.org/10.1103/PhysRevB.77.193108

  23. Z. Liu, H. Lee, Y. Xiong, et al., Science 315 (5819), 1686 (2007). https://doi.org/10.1126/science.1137368

    Article  CAS  PubMed  ADS  Google Scholar 

  24. M. Naftaly, R. E. Miles, and P. J. Greenslade, Joint 32nd Int. Conf. on Infrared and Millimeter Waves and the 15th Int. Conf. on Terahertz Electronics (2007), p. 819. https://doi.org/10.1109/ICIMW.2007.4516747

  25. S. C. Howells and L. A. Schlie, Appl. Phys. Lett. 69, 550 (1996). https://doi.org/10.1063/1.117783

    Article  CAS  ADS  Google Scholar 

  26. V. M. Agranovich and V. E. Kravtsov, Solid State Commun. 55, 85 (1985).

    Article  CAS  ADS  Google Scholar 

  27. L. Yu. Prokop’eva, Vychisl. Tekhnol. 14 (3), 58 (2009).

    Google Scholar 

  28. S. Hao, J. Wang, I. Fanayev, et al., Opt. Mater. Express. 13, 247 (2023).

    Article  CAS  ADS  Google Scholar 

  29. I. Fanyaev, I. Faniayeu, and S. Khakhomov, Intern. Conf. on Inform., Control, Commun. Techn. Astrakhan, Russian Federation (2022), p. 1. https://doi.org/10.1109/ICCT56057.2022.9976720

    Book  Google Scholar 

Download references

Funding

This work was supported by the Belarussian Republican Foundation for Basic Research (projects F22KI-016 and F22KITG-021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Fanyaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanyaev, I.A., Hao, S., Wang, J. et al. Controlled Hyperbolic Structure of Metamaterial for Subdiffraction Visualization in the Terahertz Range. Crystallogr. Rep. 68, 1215–1221 (2023). https://doi.org/10.1134/S1063774523600837

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523600837

Navigation