Skip to main content
Log in

Study of the Effect of Inverse Magnetostriction in Ferromagnet/Ferroelectric Heterostructures Using Ab Initio Calculations

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Fe/BaTiO3, Fe/SrTiO3, Co/BaTiO3, and Co/SrTiO3 heterostructures, which exhibit magnetoelectric effect, have been investigated. It is shown that the magnetic properties of thin ferromagnetic films can be controlled using an external electric field. The structural, electronic, and magnetic properties of the heterostructures have been investigated applying ab initio calculation methods. It is shown that, using the inverse piezoelectric effect, one can reduce the absolute value of the ferromagnet magnetization vector. This approach may be a basis for controlling the properties of one of the ferromagnetic layers of a superconducting spin valve and, as a consequence, the superconducting properties of the valve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. S. Ota, A. Ando, and D. Chiba, Nat. Electron. 1, 124 (2018). https://doi.org/10.1038/s41928-018-0022-3

    Article  Google Scholar 

  2. D. Makarov, M. Melzer, D. Karnaushenko, and O. G. Shmidt, Appl. Phys. Rev. 3, 011101 (2016). https://doi.org/10.1063/1.4938497

  3. C. Jia, X. Zhao, Y. H. Lai, et al., Nano Energy 60, 476 (2019). https://doi.org/10.1016/j.nanoen.2019.03.053

    Article  Google Scholar 

  4. Y. Liy, T. Yang, Y. Zhang, et al., Adv. Mater. 31, 1902783 (2019). https://doi.org/10.1038/s41928-018-0022-3

  5. S. S. Won, H. Seo, M. Kawahara, et al., Nano Energy 55, 182 (2019). https://doi.org/10.1016/j.nanoen.2018.10.068

    Article  Google Scholar 

  6. J. Yao, X. Song, X. Gao, et al., ACS Nano 12, 6767 (2018). https://doi.org/10.1021/acsnano.8b01936

    Article  Google Scholar 

  7. N. Lu, P. Zhang, Q. Zhang, et al., Nature 546, 124 (2017). https://doi.org/10.1038/nature22389

    Article  ADS  Google Scholar 

  8. D. Cao, F. Wang, Z. Jiang, et al., J. Mater. Sci. 51, 3297 (2016). https://doi.org/10.1007/s10853-015-9656-y

    Article  ADS  Google Scholar 

  9. P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, et al., Appl. Phys. Lett. 97, 102505 (2010). https://doi.org/10.48550/arXiv.1007.2511

  10. N. A. Tikhomirova, A. I. Baranov, A. V. Ginzberg, et al., Pis’ma Zh. Eksp. Teor. Fiz. 38, 365 (1983). https://doi.org/10.48550/arXiv.1007.2511

    Article  Google Scholar 

  11. N. A. Tikhomirova, L. I. Dontsova, A. V. Gigzberg, et al., Fiz. Tverd. Tela 30, 724 (1988).

    Google Scholar 

  12. Y. Zhao, R. Peng, Y. Guo, et al., Adv. Funct. Mater. 31, 2009376 (2021). https://doi.org/10.1002/adfm.202009376

  13. E. Y. Tsymbal, C. G. Duan, and S. S. Jaswal, Phys. Rev. Lett. 31, 047201 (2006). https://doi.org/10.1103/PhysRevLett.97.047201

  14. C. G. Duan, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. 97, 047201 (2006). https://doi.org/10.1103/PhysRevLett.97.047201

  15. S. Sahoo, P. Srinivas, C. G. Duan, et al., Phys. Rev. 76, 092108 (2007). https://doi.org/10.1103/PhysRevB.76.092108

  16. K. A. Muller and H. Burkard, Phys. Rev. 19, 3593 (1979). https://doi.org/10.1103/PhysRevB.19.3593

    Article  ADS  Google Scholar 

  17. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  ADS  Google Scholar 

  18. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  19. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  Google Scholar 

  20. P. E. Blöchl, Phys. Rev. 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  21. G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  22. G. Kresse and J. Furthmüller, Phys. Rev. 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  23. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  24. MedeA, version 3.6 (San Diego, USA).

  25. H. J. Monkhorst and J. D. Pack, Phys. Rev. 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  26. P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. 49, 16223 (1994). https://doi.org/10.1103/PhysRevB.49.16223

    Article  Google Scholar 

  27. M. Methfessel and A. T. Paxton, Phys. Rev. 40, 3616 (1989). https://doi.org/10.1103/PhysRevB.40.3616

    Article  ADS  Google Scholar 

  28. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, et al., Phys. Rev. 57, 1505 (1998). https://doi.org/10.1103/PhysRevB.57.1505

    Article  ADS  Google Scholar 

  29. C. E. Calderon, J. J. Plata, and C. Toher, Comp. Mater. Sci. 108, 233 (2015). https://doi.org/10.1016/j.commatsci.2015.07.019

    Article  Google Scholar 

  30. I. I. Oleinik, E. Y. Tsymbal, and D. G. Pettifor, Phys. Rev. 65, 020401 (2001). https://doi.org/10.1103/PhysRevLett.98.115503

Download references

Funding

The study of the structures based on barium titanate were supported by the Russian Science Foundation (grant no. 21-72-10178). The structures based on strontium titanate were investigated within the State assignment for the Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences.” Computational resources were supplied by the Laboratory of Computer Design of New Materials and Machine Learning of the Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Gumarova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Dedicated to the memory of L.A. Shuvalov

Translated by Yu. Sin’kov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumarova, I.I., Evseev, K.V., Kamashev, A.A. et al. Study of the Effect of Inverse Magnetostriction in Ferromagnet/Ferroelectric Heterostructures Using Ab Initio Calculations. Crystallogr. Rep. 68, 806–812 (2023). https://doi.org/10.1134/S1063774523600540

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523600540

Navigation