Skip to main content
Log in

Effect of the Component Interaction on the Phase Transitions and Dielectric Properties of Ferroelectric Composites

  • NANOMATERIALS AND CERAMICS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The dielectric properties of ferroelectric composites and the specific features of the phase transitions occurring in them are discussed in comparison with the homogeneous ferroelectrics incorporated in the composites studied. The components incorporated into the dielectric matrix of ferroelectrics are considered to be triglycine sulfate, single crystals of potassium dihydrogen phosphate group, sodium nitrite, and perovskite-type materials. The factors changing the temperature range of polar phase existence in the ferroelectric composites under consideration are revealed and discussed. The results of the studies performed in this field are briefly reviewed. The work with the ferroelectric components incorporated into the aforementioned composites was performed in cooperation and under the guidance of L.A. Shuvalov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. F. J. Wang, L. Jing, and J. F. Wang, J. Phys. D 55, 303002 (2022). https://doi.org/10.1088/1361-6463/ac5e8b

  2. Z. Kutnjak, B. Vodopivec, and R. Blinc, J. Chem. Phys. 123, 084708 (2005). https://doi.org/10.1063/1.2007687

  3. E. Rysiakiewicz-Pasek, R. Poprawski, and J. Polanska, J. Non-Cryst. Solids 352, 4309 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.07.026

    Article  ADS  Google Scholar 

  4. V. O. Sherman, A. K. Tagantsev, and N. Setter, J. Appl. Phys. 99, 074104. (2006). https://doi.org/10.1063/1.2186004

  5. E. A. Mikhaleva, I. N. Flerov, and A. V. Kartashev, Ferroelectrics 513, 44 (2017). https://doi.org/10.1080/00150193.2017.1350436

    Article  ADS  Google Scholar 

  6. B. M. Darinskii, A. S. Sidorkin, A. S. Sigov, and N. G. Popravko, Materials 11, 85 (2018). https://doi.org/10.3390/11010085

    Article  ADS  Google Scholar 

  7. H. T. Nguyen, A. S. Sidorkin, S. D. Milovidova, and M. Sumets, Appl. Nanosci. 10, 499 (2020). https://doi.org/10.1007/s13204-019-01131-0

    Article  ADS  Google Scholar 

  8. S. D. Milovidova, A. S. Sidorkin, O. V. Rogazinskaya, and E. V. Vorotnikov, Ferroelectrics 497, 69 (2016). https://doi.org/10.1080/00150193.2016.1162620

    Article  ADS  Google Scholar 

  9. N. G. Popravko, A. S. Sidorkin, S. D. Milovidova, and O. V. Rogazinskaya, Phys. Solid State 57, 510 (2015).

    Article  ADS  Google Scholar 

  10. H. T. Nguyen, A. S. Sidorkin, S. D. Milovidova, and O. V. Rogazinskaya, Ferroelectrics 498, 27 (2016). https://doi.org/10.1080/00150193.2016.1166835

    Article  ADS  Google Scholar 

  11. H. T. Nguyen, A. S. Sidorkin, S. D. Milovidova, and O. V. Rogazinskaya, Ferroelectrics 512, 71 (2017). https://doi.org/10.1080/00150193.2017.1349900

    Article  ADS  Google Scholar 

  12. B. D. Mai, H. T. Nguyen, and D. H. Ta, Ferroelectrics 543, 175 (2019). https://doi.org/10.1080/00150193.2019.1592431

    Article  ADS  Google Scholar 

  13. B. D. Mai and H. T. Nguyen, Transactions 60, 1902 (2019).

    Google Scholar 

  14. A. V. Azovtsev and N. A. Pertsev, J. Appl. Phys. 120, 214103 (2016). https://doi.org/10.1063/1.4969048

  15. M. Kinka, Ju. Banys, and A. Naberezhnov, Ferroelectrics 348, 67 (2007). https://doi.org/10.1080/00150190701196161

    Article  ADS  Google Scholar 

  16. E. V. Colla, E. Yu. Koroleva, and W. A. Kumzerov, Ferroelectr. Lett. Sect. 20, 143 (1996). https://doi.org/10.1080/07315179608204732

    Article  ADS  Google Scholar 

  17. S. V. Baryshnikov, E. V. Charnaya, and E. V. Stukova, Phys. Solid State 52, 1347 (2010).

    Google Scholar 

  18. S. V. Baryshnikov, E. V. Charnaya, and Yu. A. Shatskaya, Phys. Solid State 53, 1146 (2011).

    Article  Google Scholar 

  19. O. A. Karaeva, L. N. Korotkov, A. A. Naberezhnov, and E. Rysiakiewicz-Pasek, Phys. Solid State 51, 1304 (2009).

    Article  Google Scholar 

  20. S. V. Baryshnikov, E. V. Stukova, and E. V. Charnaya, Phys. Solid State 48, 551 (2006).

    Article  Google Scholar 

  21. V. V. Tarnavich, A. S. Sidorkin, and T. N. Korotkova, Crystals 9, 593 (2019). https://doi.org/10.3390/cryst9110593

    Article  Google Scholar 

  22. B. M. Darinskii and A. S. Sidorkin, AIP Adv. 7, 035019 (2017). https://doi.org/10.1063/1.4979505

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sidorkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Dedicated to the memory of L.A. Shuvalov

Translated by Yu. Sin’kov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorkin, A.S., Darinskii, B.M., Milovidova, S.D. et al. Effect of the Component Interaction on the Phase Transitions and Dielectric Properties of Ferroelectric Composites. Crystallogr. Rep. 68, 832–839 (2023). https://doi.org/10.1134/S1063774523600515

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523600515

Navigation