Skip to main content
Log in

Calculation of the Phonon Spectrum of PbMnBO4 Crystal Using Density Functional Theory

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The phonon dispersion and Raman spectrum of the PbMnBO4 ferromagnetic crystal have been calculated within the density functional theory. Imaginary phonon branches have been observed at the points Y, Z, and Г and along the X–S direction of the Brillouin zone, which indicates structural instability and a possible phase transition with variation in external factors (temperature and pressure). The shapes of vibrations and symmetry types of the normal modes of the crystal at the center of the Brillouin zone have been determined. The calculation results are compared with the experimental and theoretical spectra from other studies. It is shown that the vibrational mode of highest intensity at 692.5 cm–1 in the spectrum and the mode at 272.3 cm–1, corresponding to the experimental modes at 690.5 and 224.7 cm–1, are bending vibrations of oxygen atoms in distorted MnO6 octahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. H. Park and J. Barbier, Acta Crystallogr. E 57, i82 (2001). https://doi.org/10.1107/S1600536801013940

    Article  ADS  Google Scholar 

  2. H. Park, J. Barbier, and R. P. Hammond, Solid State Sci. 5 (4), 565 (2003). https://doi.org/10.1016/S1293-2558(03)00056-6

    Article  ADS  Google Scholar 

  3. H. Park, R. Lam, J. E. Greedan, and J. Barbier, Chem. Mater. 15, 1703 (2003). https://doi.org/10.1021/cm0217452

    Article  Google Scholar 

  4. W. Gao, Y. Jing, J. Yang, et al., Inorg Chem. 53, 2364 (2014). https://doi.org/10.1021/ic403175w

    Article  Google Scholar 

  5. K. Song, M. Yue, W. Gao, et al., J. Alloys Compd. 684, 346 (2016). https://doi.org/10.1016/j.jallcom.2016.05.194

    Article  Google Scholar 

  6. J. Yang and X. Sun, Int. J. Hydrogen En. 47 (61), 25608 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.305

    Article  Google Scholar 

  7. H.-J. Koo and M.-H. Whangbo, Solid State Commun. 149 (15–16), 602 (2009). https://doi.org/10.1016/j.ssc.2009.01.030

    Article  ADS  Google Scholar 

  8. A. Pankrats, K. Sablina, D. Velikanov, et al., J. Magn. Magn. Mater. 353, 23 (2014). https://doi.org/10.1016/j.jmmm.2013.10.018

    Article  ADS  Google Scholar 

  9. M. M. Murshed, C. B. Mendive, M. Curti, et al., Mater. Res. Bull. 9, 170 (2014). https://doi.org/10.1016/j.materresbull.2014.07.005

    Article  Google Scholar 

  10. M. A. Prosnikov, A. N. Smirnov, V. Yu. Davydov, et al., J. Phys.: Condens. Matter 29, 025808 (2017). https://doi.org/10.1088/0953-8984/29/2/025808

  11. M. Curti, M. M. Murshed, T. Bredow, et al., J. Mater. Sci. 54, 13579 (2019). https://doi.org/10.1007/s10853-019-03866-1

    Article  ADS  Google Scholar 

  12. M. A. Prosnikov, Phys. Rev. B 103, 094443 (2021). https://doi.org/10.1103/PhysRevB.103.094443

  13. A. I. Pankrats, K. A. Sablina, D. A. Velikanov, et al., Solid State Phenom. 215, 372 (2014). https://doi.org/10.4028/www.scientific.net/SSP.215.372

    Article  Google Scholar 

  14. A. Pankrats, K. Sablina, M. Eremin, et al., J. Magn. Magn. Mater. 414, 82 (2016). https://doi.org/10.1016/j.jmmm.2016.04.042

    Article  ADS  Google Scholar 

  15. A. Pankrats, M. Kolkov, S. Martynov, et al., J. Magn. Magn. Mater. 471, 416 (2019). https://doi.org/10.1016/j.jmmm.2018.09.098

    Article  ADS  Google Scholar 

  16. M. A. Prosnikov, M. E. Bal, M. I. Kolkov, et al., Phys. Rev. Res. 4, 013004 (2022). https://doi.org/10.1103/PhysRevResearch.4.013004

  17. S. N. Martynov, Phys. Solid State 63, 1253 (2021). https://doi.org/10.1134/S1063783421080199

    Article  ADS  Google Scholar 

  18. Th. M. Gesing, C. B. Mendive, M. Curti, et al., Z. Kristallogr. 228 (10), 532 (2013). https://doi.org/10.1524/zkri.2013.1640

    Article  Google Scholar 

  19. S. J. Clark, M. D. Segall, C. J. Pickard, et al., Z. Kristallogr. 220, 567 (2005). https://doi.org/10.1524/zkri.220.5.567.65075

    Article  Google Scholar 

  20. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  Google Scholar 

  21. P. C. Hohenberg, W. Kohn, and L. J. Sham, Adv. Quantum Chem. 21, 7 (1990). https://doi.org/10.1016/S0065-3276(08)60589-4

    Article  ADS  Google Scholar 

  22. B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, J. Comp. Physiol. 131, 233 (1997). https://doi.org/10.1006/jcph.1996.5612

    Article  ADS  Google Scholar 

  23. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  24. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  25. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, et al., Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

  26. R. M. Hanson, Enhancing Learning with Online Resources, Social Networking, and Digital Libraries, Chap. Web-Based Molecular Visualization for Chemistry Education in the 21st Century, ACS Symposium Series (2010), p. 65. https://doi.org/10.1021/bk-2010-1060.ch004

  27. J. G. Moberly, M. T. Bernards, and K. V. Waynant, J. Cheminform. 10, 5 (2018). https://doi.org/10.1186/s13321-018-0259-x

    Article  Google Scholar 

  28. D. L. Rousseau, R. P. Bauman, and S. P. S. Porto, J. Raman Spectrosc. 10, 253 (1981). https://doi.org/10.1002/jrs.1250100152

    Article  ADS  Google Scholar 

  29. R. Dovesi, R. Orlando, B. Civalleri, et al., Z. Kristallogr. 220, 571 (2005).

    Article  Google Scholar 

  30. R. Dovesi, V. R. Saunders, C. Roetti, et al., CRYSTAL09 User’s Manual (Univ. of Torino, 2009).

    Google Scholar 

  31. T. Bredow and A. R. Gerson, Phys. Rev. B 61, 5194 (2000). https://doi.org/10.1103/PhysRevB.61.5194

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 21-52-12018 NNIO_а.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Krylova.

Ethics declarations

The author declares that she has no conflicts of interest.

Additional information

Dedicated to the memory of L.A. Shuvalov

Translated by E. Bondareva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylova, S.N. Calculation of the Phonon Spectrum of PbMnBO4 Crystal Using Density Functional Theory. Crystallogr. Rep. 68, 788–796 (2023). https://doi.org/10.1134/S1063774523600436

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523600436

Navigation