Skip to main content
Log in

Coherence Assembly in Structures with Heavy Metal Clusters

  • THEORY OF CRYSTAL STRUCTURES
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A crystallographic analysis of two structures, monoclinic Nа8[{Re4(PO)4}(CN)12]⋅18H2O⋅CH3OH (I) and orthorhombic [(C6H5)4P]4 [Ta6I12(CN6)] (II), in which clusters of heavy atoms are significantly rarefied in space, so that their mutual arrangement cannot be explained only in terms of chemical interaction, has been performed. In structure I the crystallographic planes with a high atomic density (“skeletal” planes) are located in the regions with dhkl = 10–5.5 Å and dhkl < 3 Å. The planes in which atomic groups [Re4(PO)4] (playing the role of unified bulk objects) are concentrated are in fact selected in the first region. In the second region, ordering is implemented at the level of individual atoms. A crystallographic analysis showed that the structure basis is determined by the sites of heavy Re cations. A striking fact is that there are 1152 subcells and only 32 Re atoms per unit cell in this structure; i.e., only the fraction of 1/144 provides the basis of structure stability. In structure II “skeletal” planes are also absent in the range of dhkl from ∼7 to ∼4 Å. The planes in the range of large dhkl characterize cluster ordering, whereas the planes in the range of small dhkl characterize ordering of separate atoms. The geometry and local symmetry of the cluster group (Та6 octahedron) dictates the basis of translational symmetry—unified sublattice of sites, most of which are free of these atoms. The considered structures demonstrate the key role of heavy atoms in the formation of translational symmetry—the fundamental difference of the crystalline state from other condensed states. The newly formed structure retains partially local symmetry of cores (templates) of atomic groups, bound by strong chemical interactions, including the interactions between heavy and light atoms. The process of formation of a crystal structure from randomly oriented and randomly located templates—coherence assembly—is implemented according to the laws of dynamics of elastic media, where masses of atoms rather than their chemical characteristics are important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 2.

REFERENCES

  1. M. O’Keeffe and B. G. Hyde, Philos. Trans. R. Soc. London, Math. Phys. Sci. 295, 553 (1980).

    Google Scholar 

  2. O. Delgado-Friedrichs and M. O’Keeffe, Acta Crystallogr. A 59, 351 (2003).

    Article  Google Scholar 

  3. J.-G. Eon, Acta Crystallogr. A 67, 68 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  4. O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, et al., Nature 423, 705 (2003).

    Article  ADS  Google Scholar 

  5. N. W. Ockwig, O. Delgado-Friedrichs, and M. O’Keeffe, Acc. Chem. Res. 38, 176 (2005).

    Article  Google Scholar 

  6. O. M. Yaghi, M. O’Keeffe, and M. Kanatzidis, J. Solid State Chem. 152, 1 (2000).

    Article  ADS  Google Scholar 

  7. M. O’Keeffe and B. G. Hyde, Philos. Trans. R. Soc. London, Math. Phys. Sci. 295, 553 (1980).

    Google Scholar 

  8. O. Delgado-Friedrichs, M. D. Foster, M. O’Keeffe, et al., Solid State Chem. 178, 2533 (2005).

    Article  ADS  Google Scholar 

  9. W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley, New York, 1972).

    Google Scholar 

  10. P. I. Kripyakevich, The Structure Types of Intermetallic Compounds (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  11. N. L. Smirnova, On Some Fundamental Elements in Parts of Crystalline Space. Crystal Chemistry of Minerals (Nauka, Leningrad, 1981) [in Russian].

    Google Scholar 

  12. N. A. Bliznyuk and S. V. Borisov, Zh. Strukt. Khim. 33, 145 (1992).

    Google Scholar 

  13. G. Ferraris, E. Makovicky, and S. Merlino, Crystallo-graphy of Modular Materials (Oxford Univ. Press, 2004).

    Google Scholar 

  14. Y. Moëlo, E. Makovicky, N. N. Mozgova, et al., Eur. J. Mineral. 20, 7 (2008).

    Article  ADS  Google Scholar 

  15. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina, Russ. Chem. Rev. 84 (4), 393 (2015).

    Article  ADS  Google Scholar 

  16. S. V. Borisov, Zh. Strukt. Khim. 33 (6), 123 (1992).

    Google Scholar 

  17. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina, Algorithms and Practice of the Crystallographic Analysis of Atomic Structures (Izd-vo SO RAN, Novosibirsk, 2012) [in Russian].

    Google Scholar 

  18. N. T. Evans, Persp. Struct. Chem. 4, 1 (1971).

    Google Scholar 

  19. S. V. Borisov, R. F. Klevtsova, S. A. Magarill, et al., Zh. Strukt. Khim. 43 (4), 664 (2002).

    Google Scholar 

  20. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina, J. Struct. Chem. 55 (3), 470 (2014).

    Article  Google Scholar 

  21. M. Nyman, Dalton Trans. 40, 8049 (2011).

    Article  Google Scholar 

  22. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina, Crystallogr. Rep. 56 (6), 935 (2011).

    Article  ADS  Google Scholar 

  23. A. S. Pronin, K. A. Brylev, M. Shtröbele, et al., J. Struct. Chem. 62 (7), 1079 (2021).

    Article  Google Scholar 

  24. K. Brandenburg, DIAMOND (Crystal Impact GbR, Bonn, 2012).

  25. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina, J. Struct. Chem. 60 (8), 1191 (2019).

    Article  Google Scholar 

  26. S. A. Gromilov, E. A. Bykova, and S. V. Borisov, Crystallogr. Rep. 56 (6), 947 (2011).

    Article  ADS  Google Scholar 

  27. M. V. Shamshurin, M. A. Mikhaylov, T. Sukhikh, et al., Inorg. Chem. 58, 9028 (2019).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 121031700313-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Pervukhina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, S.V., Magarill, S.A. & Pervukhina, N.V. Coherence Assembly in Structures with Heavy Metal Clusters. Crystallogr. Rep. 68, 566–574 (2023). https://doi.org/10.1134/S1063774523600291

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523600291

Navigation