Skip to main content
Log in

Complex of Laboratory Growth Facilities for Solution–Melt Synthesis Crystals of Iron Borate FeBO3 and Crystals of Solid Solutions on Its Basis

  • APPARATUS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A complex of laboratory growth facilities, designed for solution–melt synthesis of highly perfect single crystals of iron borate, as well as crystals based on this compound, has been developed and constructed. Equipping growth plants with program-controlled functional units makes it possible to fully automate the technological process. As a result of test experiments single crystals of iron borate FeBO3 and single crystals doped with diamagnetic gallium atoms, Fe\(_{{1-x}}\)GaxBO3, were obtained. The high structural perfection of the synthesized samples was confirmed by X-ray diffraction analysis and high-resolution electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. V. A. Timofeeva, Crystal Growth from Flux (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  2. B. K. Vainshtein, Modern Crystallography, Vol. 3 (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  3. V. A. Timofeeva and I. Kvapil, Kristallografiya 11, 289 (1966).

    Google Scholar 

  4. N. G. Ryabtsev, Materials of Quantum Electronics (Sovetskoe Radio, Moscow, 1972) [in Russian].

    Google Scholar 

  5. M. F. Kupriyanov, Yu. V. Kabirov, A. G. Rudskaya, et al., Physicochemical Bases of Forming Active Materials (Izd-vo YuFU, Rostov-on-Don, 2011) [in Russian].

  6. L. M. Letyuk and G. I. Zhuravlev, Chemistry and Technology of Ferrites (Khimiya, Leningrad, 1983) [in Russian].

    Google Scholar 

  7. D. Elwell, Man-made Gemstones. (E. Horwood, New York, 1979).

    Google Scholar 

  8. L. N. Bezmaternykh, S. A. Kharlamova, and V. L. Temerov, Crystallogr. Rep. 49, 855 (2004). https://doi.org/10.1134/1.1803319

    Article  ADS  Google Scholar 

  9. L. N. Bezmaternykh, V. L. Temerov, I. A. Gudim, et al., Crystallogr. Rep. 50, 97 (2005). https://doi.org/10.1134/1.2133981

    Article  ADS  Google Scholar 

  10. R. Diehl, W. Jantz, B. I. Nolang, et al., Current Topics in Materials Science (Elsevier, New York, 1984).

    Google Scholar 

  11. N. I. Leonyuk, Crystallogr. Rep. 53, 511 (2008).

    Article  ADS  Google Scholar 

  12. V. Maslov, V. Voronov, L. Iskhakova, et al., Inorg. Mater. 15, 1151 (2019).

    Article  Google Scholar 

  13. N. Kuz’min, V. Mal’tsev, E. Volkova, et al., Inorg. Mater. 56, 828 (2020).

    Article  Google Scholar 

  14. K. Korzhneva, L. Isaenko, A. Eliseev, et al., Fundam. Probl. Sovrem. Materialoved. 15, 11 (2018).

    Google Scholar 

  15. A. N. Murashkevich and I. M. Zharskii, Theory and Methods of Single Crystal Growth (Izd-vo BGTU, Minsk, 2010).

    Google Scholar 

  16. E. S. Smirnova, N. I. Snegirev, I. S. Lyubutin, et al., Acta Crystallogr. B 76, 1100 (2020). https://doi.org/10.1107/S2052520620014171

    Article  Google Scholar 

  17. N. Snegirev, I. Lyubutin, A. Kulikov, et al., J. Alloys Compd. 889, 161702 (2021). https://doi.org/10.1016/j.jallcom.2021.161702

  18. M. Kotrbova, S. Kadečková, J. Novak, et al., J. Cryst. Growth 71, 607 (1985).

    Article  ADS  Google Scholar 

  19. C. G. Ovchinnikov, V. V. Rudenko, N. V. Kazak, et al., J. Exp. Theor. Phys. 158, 177 (2020).

    Article  ADS  Google Scholar 

  20. V. Potapkin, A. I. Chumakov, G. V. Smirnov, et al., J. Synchrotron Radiat. 19, 559 (2012). https://doi.org/10.1107/S0909049512015579

    Article  Google Scholar 

  21. S. V. Yagupov, Yu. A. Mogilenets, N. I. Snegirev, et al., Patent RF No. 2740126.

  22. S. V. Yagupov, Yu. A. Mogilenets, N. I. Snegirev, et al., Patent RF No. 2769681.

  23. N. I. Snegirev, A. V. Bogach, I. S. Lyubutin, et al., Phys. Met. Metallogr. 124, 133 (2023). https://doi.org/10.1134/S0031918X22601809

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-29-12016/21-mk) in the part of expanding technological capabilities, setting up laboratory growth equipment and preparing it for operation, and carrying out synthesis and X-ray analysis of single crystals. XRF measurements were supported by the Ministry of Science and Higher Education of the Russian Federation within the State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, using equipment of the Shared Research Center. Shaft furnaces SShOL-1.3/12-I1, temperature controllers TERMODAT-19Е5, and overhead stirrers SMR-308 were purchased in the framework of the Program of Development of the Vernadsky Crimean Federal University for 2014–2024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Snegirev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagupov, S.V., Mogilenec, Y.A., Seleznev, K.A. et al. Complex of Laboratory Growth Facilities for Solution–Melt Synthesis Crystals of Iron Borate FeBO3 and Crystals of Solid Solutions on Its Basis. Crystallogr. Rep. 68, 644–650 (2023). https://doi.org/10.1134/S1063774523600199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523600199

Navigation