Skip to main content
Log in

Diffusion of Phonons in Polycrystalline YAG Ceramic Samples at Liquid-Helium Temperatures, According to the Stationary and Non-Stationary Measurement Data

  • NANOMATERIALS AND CERAMICS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The specific features of the transport of thermal-frequency phonons at liquid-helium (He) temperatures under the conditions of non-stationary measurements and thermal conductivity in polycrystalline Y3Al5O12 (YAG) ceramic samples, synthesized in different technological regimes, have been studied. The relationship between the phonon diffusion coefficient and the structural features of grains (crystallites) and grain boundaries has been revealed by analyzing the non-stationary measurement data and the thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. S. N. Ivanov, E. N. Khazanov, T. Paszkiewicz, et al., Z. Phys. B 99, 535 (1996).

    Article  ADS  Google Scholar 

  2. I. E. Lezova, O. V. Karban’, A. V. Taranov, et al., J. Exp. Theor. Phys. 130 (1), 76 (2020).

    Article  ADS  Google Scholar 

  3. E. I. Salamatov, A. V. Taranov, E. N. Khazanov, et al., J. Exp. Theor. Phys. 125 (5), 768 (2017).

    Article  ADS  Google Scholar 

  4. V. I. Al’shits, S. N. Ivanov, Ya. M. Soifer, et al., Fiz. Tverd. Tela 31 (11), 63 (1989).

    Google Scholar 

  5. Yu. N. Barabanenkov, V. V. Ivanov, S. N. Ivanov, et al., J. Exp. Theor. Phys. 102 (1), 114 (2006).

    Article  ADS  Google Scholar 

  6. T. Yanagitani and H. Yagi, Jpn. Patents Nos. 10-101333, 10-101411; 1998.

  7. I. B. Levinson, Pis’ma Zh. Eksp. Teor. Fiz. 37 (3), 157 (1983).

    Google Scholar 

  8. I. B. Levinson, Zh. Eksp. Teor. Fiz. 52 (4), 704 (1980).

    Google Scholar 

  9. E. N. Khazanov and A. V. Taranov, Radiotekh. Elektron. 58 (9), 874 (2013).

    Google Scholar 

  10. E. I. Salamatov, A. V. Taranov, and E. N. Khazanov, Radiotekh. Elektron. 67 (6), 523 (2022).

    Google Scholar 

  11. Yu. N. Barabanenkov, V. V. Ivanov, S. N. Ivanov, et al., J. Exp. Theor. Phys. 92 (3), 474 (2001).

    Article  ADS  Google Scholar 

  12. V. D. Kagan and A. V. Suslov, Fiz. Tverd. Tela 36, 2672 (1994).

    Google Scholar 

  13. S. N. Ivanov, A. V. Taranov, and E. N. Khazanov, Zh. Eksp. Teor. Fiz. 99 (4), 1311 (1991).

    Google Scholar 

  14. A. A. Kaminskii, A. V. Taranov, E. N. Khazanov, and M. Sh. Akchurin, Kvantovaya Elektron. 42, 880 (2012).

    Article  Google Scholar 

  15. V. V. Ivanov, E. I. Salamatov, A. V. Taranov, and E. N. Khazanov, J. Exp. Theor. Phys. 106 (2), 288 (2008).

    Article  ADS  Google Scholar 

  16. Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, et al., JETP Lett. 79 (7), 342 (2004).

    Article  ADS  Google Scholar 

  17. A. A. Kaplyanskii, M. B. Mel’nikov, and S. P. Feofilov, Fiz. Tverd. Tela 38 (5), 1434 (1996).

    Google Scholar 

  18. H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, Ceram. Int. 33, 711 (2007).

    Article  Google Scholar 

  19. A. Glen Slack and D. W. Oliver, Phys. Rev. 4 (2), 592 (1971).

    Article  Google Scholar 

  20. E. V. Shevchenko, E. V. Charnaya, E. N. Khazanov, et al., J. Alloys Compds. 717, 183 (2017).

    Article  Google Scholar 

  21. M. Sh. Akchurin, R. V. Gainutdinov, A. A. Kaminskii, et al., Zh. Eksp. Teor. Fiz. 108 (1), 83 (2009).

    Google Scholar 

  22. A. A. Kaminskii, M. Sh. Akchurin, V. I. Al’shits, et al., Crystallogr. Rep. 48, 515 (2003).

    Article  ADS  Google Scholar 

  23. M. Sh. Akchurin, R. V. Gainutdinov, and A. A. Kaminskii, Poverkhnost’: Rentgen., Sinkhrotron. Neitr. Issled. 9, 78 (2006).

    Google Scholar 

  24. M. Sh. Akchurin and R. V. Galiulin, Crystallogr. Rep. 43, 454 (1998).

    ADS  Google Scholar 

  25. M. Sh. Akchurin, R. V. Gainutdinov, I. I. Kupenko, et al., Dokl. Akad. Nauk 441 (6), 743 (2011).

    Google Scholar 

  26. I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, Kvantovaya Elektron. 37 (7), 633 (2007).

    Article  Google Scholar 

  27. A. V. Taranov and E. N. Khazanov, Zh. Eksp. Teor. Fiz. 134 (2(8)), (8), 595 (2008).

  28. J. Lu, M. Prabhu, J. Xu, et al., Appl. Phys. Lett. 77, 3767 (2000).

    Article  Google Scholar 

  29. D. V. Kazakovtsev and I. B. Levinson, Pis’ma Zh. Eksp. Teor. Fiz. 27 (3), 194 (1978).

    Google Scholar 

  30. A. A. Kaminskii, S. N. Bagayev, K. Ueda, et al., Laser Phys. Lett. 3, 375 (2006).

    Article  ADS  Google Scholar 

  31. S. N. Ivanov, Yu. N. Barabanenkov, A. V. Taranov, et al., Phys. Status Solidi B 242 (10), 1983 (2005).

    Article  ADS  Google Scholar 

  32. V. V. Ivanov, S. N. Ivanov, A. S. Kaigorodov, et al., Inorg. Mater. 43 (12), 1365 (2007).

    Article  Google Scholar 

  33. E. N. Khazanov, A. V. Taranov, S. G. Alekseev, and N. I. Polzikova, J. Exp. Theor. Phys. 118 (1), 87 (2014).

    Article  ADS  Google Scholar 

  34. E. N. Khazanov, A. V. Taranov, R. V. Gainutdinov, et al., J. Exp. Theor. Phys. 110 (6), 983 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Taranov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazanov, E.N., Taranov, A.V. Diffusion of Phonons in Polycrystalline YAG Ceramic Samples at Liquid-Helium Temperatures, According to the Stationary and Non-Stationary Measurement Data. Crystallogr. Rep. 67, 1252–1258 (2022). https://doi.org/10.1134/S1063774522070434

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522070434

Navigation