Skip to main content
Log in

Evidence for the Perchlorate Anion Coordination in the Structure of Uranyl Cation Complex with N,O-Donor Ligands in a Solution: RMC-EXAFS Study

  • STRUCTURE OF ORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Complexing of organic ligands with actinides plays a key role in the processes of spent nuclear fuel reprocessing in the final stages of the nuclear fuel cycle. N,O-Donor ligands based on phenanthroline diamides are promising for group isolation and separation of actinides in hydrometallurgical approaches that are alternative to the PUREX process (such as the GANEX process). Understanding of the specific features of actinide ions complexing in an organic solvent may explain the mechanisms of extraction and be useful to find an “ideal” extractant for uranium extraction. Specific features of metal coordination in the presence of perchlorate anion have been studied by the example of a UO2(ClO4)2 complex with pyrrolidine-substituted 1,10-phenanthroline-diamide in an organic solvent, and the structure of the complex compound has been compared with that for a similar compound with nitrate anion as a counter ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. R. A. Aliev and S. N. Kalmykov, Radioactivity (Lan’, St. Petersburg, 2013) [in Russian].

  2. S. V. Gutorova, P. I. Matveev, P. S. Lemport, et al., Inorg. Chem. 61 (1), 384 (2022). https://doi.org/10.1021/acs.inorgchem.1c02982

    Article  Google Scholar 

  3. C.-L. Xiao, C.-Z. Wang, L.-Y. Yuan, et al., Inorg. Chem. 53 (3), 1712 (2014). https://doi.org/10.1021/ic402784c

    Article  Google Scholar 

  4. L. Xu, N. Pu, G. Ye, et al., Inorg. Chem. Front. 7 (8), 1726 (2020). https://doi.org/10.1039/d0qi00200c

    Article  Google Scholar 

  5. C. Ekberg, E. Löfström-Engdahl, E. Aneheim, et al., Dalton. Trans. 44 (42), 18395 (2015). https://doi.org/10.1039/c5dt02859k

    Article  Google Scholar 

  6. A. Wilden, P. M. Kowalski, L. Klaß, et al., Chem. A Eur. J. 25 (21), 5507 (2019). https://doi.org/10.1002/chem.201806161

    Article  Google Scholar 

  7. M. Sun, L. Xu, X. Yang, S. Wang, L. Lei, and C. Xiao, Inorg. Chem. 61, (2022). https://doi.org/10.1021/acs.inorgchem.1c03270

  8. A. N. Turanov, V. K. Karandashev, A. V. Kharlamov, et al., Solvent Extr. Ion Exch. 37 (1), 65 (2019). https://doi.org/10.1080/07366299.2019.1592923

    Article  Google Scholar 

  9. X. Yang, L. Xu, Y. Hao, et al., Inorg. Chem. 59 (23), 17453 (2020). https://doi.org/10.1021/acs.inorgchem.0c02728

    Article  Google Scholar 

  10. L. Xu, N. Pu, Y. Li, et al., Inorg. Chem. 58 (7), 4420 (2019). https://doi.org/10.1021/acs.inorgchem.8b03592

    Article  Google Scholar 

  11. A. Ikeda, K. Itoh, T. Suzuki, et al., J. Alloys Compd. 408–412, 1052 (2006). https://doi.org/10.1016/j.jallcom.2004.11.096

    Article  Google Scholar 

  12. S. Stumpf, I. Billard, C. Gaillard, et al., Radiochim. 96 (1), 1 (2008). https://doi.org/10.1524/ract.2008.1461

    Article  Google Scholar 

  13. M. Simonnet, S. Suzuki, Y. Miyazaki, et al., Solvent Extr. Ion Exch. 38 (4), 430 (2020). https://doi.org/10.1080/07366299.2020.1744806

    Article  Google Scholar 

  14. S. Tachimori, Y. Sasaki, and S. I. Suzuki, Solvent Extr. Ion Exch. 20 (6), 687 (2002). https://doi.org/10.1081/SEI-120016073

    Article  Google Scholar 

  15. I. V. Smirnov, Radiochemistry 49 (1), 44 (2007). https://doi.org/10.1134/S1066362207010080

    Article  Google Scholar 

  16. K. Niu, F. Yang, T. Gaudin, et al., Inorg. Chem. 60 (13), 9552 (2021). https://doi.org/10.1021/acs.inorgchem.1c00657

    Article  Google Scholar 

  17. P. Di Bernardo, A. Melchior, M. Tolazzi, and P. L. Za-nonato, Coord. Chem. Rev. 256 (1–2), 328 (2012). https://doi.org/10.1016/j.ccr.2011.07.010

    Article  Google Scholar 

  18. P. S. Lemport, P. I. Matveev, and A. V. Yatsenko, RSC Adv. 10 (44), 26022 (2020). https://doi.org/10.1039/D0RA05182A

    Article  ADS  Google Scholar 

  19. A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instrum. Methods Phys. Res., Sect. A, 603 (1–2), 95 (2009). https://doi.org/10.1016/J.NIMA.2008.12.167

    Article  Google Scholar 

  20. B. Ravel and M. Newville, J. Synchrotron Radiat. 12 (4), 537 (2005). https://doi.org/10.1107/S0909049505012719

    Article  Google Scholar 

  21. M. Newville, J. Synchrotron Radiat. 8 (2), 96 (2001). https://doi.org/10.1107/S0909049500016290

    Article  Google Scholar 

  22. M. Newville, J. Phys. Conf. Ser. 430, 1 (2013). https://doi.org/10.1088/1742-6596/430/1/012007

    Article  Google Scholar 

  23. M. D. Hanwell, D. E. Curtis, D. C. Lonie, et al., J. Cheminform. 4 (8), 1 (2012). https://doi.org/10.1186/1758-2946-4-17/FIGURES/14

    Article  Google Scholar 

  24. S. I. Zabinsky, J. J. Rehr, A. Ankudinov, et al., Phys. Rev. B 52 (4), 2995 (1995). https://doi.org/10.1103/PhysRevB.52.2995

    Article  ADS  Google Scholar 

  25. J. Timoshenko, A. Kuzmin, and J. Purans, J. Phys. Condens. Matter 26, 5 (2014). https://doi.org/10.1088/0953-8984/26/5/055401

    Article  Google Scholar 

  26. J. Timoshenko and A. Kuzmin, Comput. Phys. Commun. 180 (6), 920 (2009). https://doi.org/10.1016/J.CPC.2008.12.020

    Article  ADS  Google Scholar 

  27. H. Funke, A. C. Scheinost, and M. Chukalina, Phys. Rev. B Condens. Matter Mater. Phys. 71 (9), 094110 (2005). https://doi.org/10.1103/PHYSREVB.71.094110/FIGURES/9/MEDIUM

  28. C. R. Harris, K. J. Millman, S. J. van der Walt, et al., 585 (7825), 357 (2020). https://doi.org/10.1038/S41586-020-2649-2

  29. J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72 (3), 621 (2000). https://doi.org/10.1103/RevModPhys.72.621

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2019-1891).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gutorova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutorova, S.V., Matveev, P.I., Trigub, A.L. et al. Evidence for the Perchlorate Anion Coordination in the Structure of Uranyl Cation Complex with N,O-Donor Ligands in a Solution: RMC-EXAFS Study. Crystallogr. Rep. 67, 1152–1159 (2022). https://doi.org/10.1134/S1063774522070203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522070203

Navigation