Skip to main content
Log in

Synthesis, Crystal Structure and Comparative Study on the Removal of Cationic Dyes Using Different Amide and Amine Groups

  • STRUCTURE OF ORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Two crystalline materials C18H16N3O3 (1) and C10H8N2⋅C8H7NO4 (2) have been synthesized under solvothermal conditions with different time and temperatures. The structure of 1 have been determined by single-crystal X-ray diffraction analysis. Both structures were also characterized by FT-IR, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and Field Emission Scanning Electron Microscopy (FESEM) techniques. Both crystals are constructed from the same organic ligand (2-aminoterephthalic acid and 4,4-bipyridine), however, they present varied functional groups, amide for 1 and amine for 2, indicating formylation of NH2 groups of organic linkers during the synthesis process in 1. The adsorption potential of the samples for cationic methyl violet (MV) and methylene blue (MB) dyes uptake from aqueous solution was examined by UV–Vis spectrophotometer. The result showed that the adsorption rate of these cationic dyes with 1 containing amide group is higher than 2 with amine group, due to stronger acid-base interaction between amides and cationic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. M. Xing, B. Qiu, M. Du, et al., Adv. Funct. Mater. 27, 35 (2017).

    Google Scholar 

  2. D. Guo, Y. Xiao, T. Li, et al., J. Colloid Interface Sci. 560, 273 (2020).

    Article  ADS  Google Scholar 

  3. H. Wang, X. Mi, Y. Li, and S. Zhan, Adv. Mater. 32, 1 (2020).

    Google Scholar 

  4. J. Hao, L. Ji, C. Li, et al., J. Taiwan Inst. Chem. Eng. 88, 137 (2018).

    Article  Google Scholar 

  5. P. V. Nidheesh, M. Zhou, and M. A. Oturan, Chemosphere 197, 210 (2018).

    Article  ADS  Google Scholar 

  6. V. Katheresan, J. Kansedo, and S. Y. Lau, J. Environ. Chem. Eng. 6, 4676 (2018).

    Article  Google Scholar 

  7. S. L. Chiam, S. Y. Pung, and F. Y. Yeoh, Environ. Sci. Pollut. Res. 27, 5759 (2020).

    Article  Google Scholar 

  8. S. Homaeigohar, Nanomaterials 10 (2), 295 (2020).

    Article  Google Scholar 

  9. A. Ahmad, S. H. Mohd-Setapar, S. C. Chuo, et al., RSC Adv. 5, 30801 (2015).

    Article  ADS  Google Scholar 

  10. Y. An, H. Zheng, Z. Yu, et al., J. Hazard Mater. 381, 120971 (2020).

  11. A. Kausar, M. Iqbal, A. Javed, et al., J. Mol. Liq. 256, 395 (2018).

    Article  Google Scholar 

  12. J. Y. Wu and C. W. Chen, J. Solid State Chem. 265, 227 (2018).

    Article  ADS  Google Scholar 

  13. J. M. Yang, R. J. Ying, C. X. Han, et al., Dalton Trans. 47, 3913 (2018).

    Article  Google Scholar 

  14. M. Tanhaei, A. R. Mahjoub, and V. Safarifard, Ultrason. Sonochem. 41, 189 (2018).

    Article  Google Scholar 

  15. X. Wang, J. Zhao, M. Le, et al., CrystEngComm 18, 9316 (2016).

    Article  Google Scholar 

  16. X. Wang, J. Zhao, M. Le, et al., J. Inorg. Organomet. Polym. Mater. 28, 800 (2018).

    Article  Google Scholar 

  17. S. K. Konavarapu, A. Goswami, A. G. Kumar, et al., Inorg. Chem. 6, 184 (2019).

    Google Scholar 

  18. Z. Cui, H. Lin, and J. Luan, Polyhedron 194, 114943 (2021).

  19. B. Li, Q. Wang, J. Z. Guo, et al., Bioresour. Technol. 268, 454 (2018).

    Article  Google Scholar 

  20. W. Xiao, R. Xue, and Y. Yin, Acta Crystallogr. E. 67, o1333 (2011).

    Article  Google Scholar 

  21. K. M. Zwoliński, P. Nowak, and M. J. Chmielewski, Chem. Commun. 51, 10030 (2015).

    Article  Google Scholar 

  22. H. Reinsch, M. A. van der Veen, B. Gil, et al., Chem. Mater. 25, 17 (2013).

    Article  Google Scholar 

  23. H. Reinsch, S. Waitschat, and N. Stock, Dalton Trans. 42, 4840 (2013).

    Article  Google Scholar 

  24. H. M. Meshram, G. S. Reddy, M. M. Reddy, and J. S. Yadav, Tetrahedron Lett. 39, 4103 (1998).

    Article  Google Scholar 

  25. F. Tamaddon, F. Aboee, and A. Nasiri, Catal. Commun. 16, 194 (2011).

    Article  Google Scholar 

  26. M. Zhang and X. Wu, Tetrahedron Lett. 54, 1059 (2013).

    Article  Google Scholar 

  27. D. Yang and H. B. Jeon, Bull. Korean Chem. Soc. 31, 1424 (2010).

    Article  Google Scholar 

  28. A. X. Tian, J. Ying, J. Peng, et al., Cryst. Growth Des. 8, 3717 (2008).

    Article  Google Scholar 

  29. N. A. Khan, Z. Hasan, and S. H. Jhung, J. Hazard. Mater. 244–245, 444 (2013).

    Article  Google Scholar 

  30. M. Yiǧitoǧlu and Z. Temoçin, Fibers Polym. 11, 996 (2010).

    Article  Google Scholar 

  31. H. Liu, G. Gao, J. Liu, et al., CrystEngComm 21, 2576 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Abbasi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, S., Abbasi, A., Yousefi, M. et al. Synthesis, Crystal Structure and Comparative Study on the Removal of Cationic Dyes Using Different Amide and Amine Groups. Crystallogr. Rep. 67, 1207–1213 (2022). https://doi.org/10.1134/S1063774522070124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522070124

Navigation