Skip to main content
Log in

Spectral-Selective X-Ray Studies at the “Langmuir” Beamline of the Kurchatov Synchrotron Radiation Source

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A brief review of the studies in the field of bioorganic materials science, performed at the “Langmuir” beamline of the Kurchatov Synchrotron Radiation Source (KSRS), is presented. The specificity of the beamline infrastructure is discussed, and the main X-ray optical characteristics of the system are reported. The research potential of the beamline is demonstrated by an example of a series of experiments aimed at studying the mechanisms of damage of the molecular organization of pulmonary surfactant caused by nanoaerosol particles. Particular attention is paid to the experimental implementation of X-ray absorption spectroscopy (XAS) for measurements on liquid surfaces. The results of in situ studies of the change in the valence state of cerium ions on the air–liquid interface are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P. S. Pershan and M. Schlossman, Liquid Surfaces and Interfaces: Synchrotron X-Ray Methods (Cambridge Univ. Press, Cambridge, 2012).

    Book  Google Scholar 

  2. S. I. Zheludeva, N. N. Novikova, O. V. Konovalov, et al., X-Ray Standing Wave Technique: Principles and Applications (World Scientific, New York, 2013), Vol. 1, p. 355.

    Google Scholar 

  3. T. Narayanan and O. Konovalov, Materials 13 (3), 752 (2020).

    Article  ADS  Google Scholar 

  4. S. I. Zheludeva, M. V. Kovalchuk, and N. N. Novikova, Spectrochim. Acta B 56, 2019 (2001).

    Article  ADS  Google Scholar 

  5. W. Wang, I. Kuzmenko, and D. Vaknin, Phys. Chem. Chem. Phys. 16, 13517 (2014).

    Article  Google Scholar 

  6. O. Konovalov, N. N. Novikova, M. V. Kovalchuk, et al., Materials 13 (20), 4635 (2020).

    Article  ADS  Google Scholar 

  7. N. N. Novikova, S. N. Yakunin, M. V. Koval’chuk, et al., Crystallogr. Rep. 64 (6), 952 (2019).

    Article  ADS  Google Scholar 

  8. H. Rapaport, I. Kuzmenko, K. Kjaer, et al., Synchrotron Radiat. News 12 (2), 25 (1999).

    Article  ADS  Google Scholar 

  9. V. V. Lider, E. Yu. Tereshchenko, S. I. Zheludeva, et al., Poverkhnost’: Rentgen., Sinkhrotron. Neitr. Issled., No. 7, 5 (2004).

  10. A. V. Rogachev, N. N. Novikova, and M. V. Kovalchuk, Langmuir 38 (12), 3630 (2022).

    Article  Google Scholar 

  11. J. Daillant and A. Gibaud, X-Ray and Neutron Reflectivity: Principles and Applications (Springer, Berlin, 2009).

    Book  Google Scholar 

  12. V. M. Kaganer, H. Möhwald, and P. Dutta, Rev. Mod. Phys. 71 (3), 779 (1999).

    Article  ADS  Google Scholar 

  13. N. N. Novikova, M. V. Koval’chuk, S. N. Yakunin, et al., Crystallogr. Rep. 61 (5), 857 (2016).

    Article  ADS  Google Scholar 

  14. M. V. Koval’chuk and V. G. Kon, Usp. Fiz. Nauk 149 (5), 69 (1986).

    Article  Google Scholar 

  15. I. A. Vartanyants and M. V. Kovalchuk, Rep. Prog. Phys. 64 (9), 1009 (2001).

    Article  ADS  Google Scholar 

  16. J. Bloch, M. Sansone, F. Rondelez, et al., Phys. Rev. Lett. 54, 1039 (1985).

    Article  ADS  Google Scholar 

  17. S. Zheludeva, N. Novikova, N. Stepina, et al., Spectrochim. Acta B 63, 1339 (2008).

    Article  Google Scholar 

  18. W. Abuillan, E. Schneck, A. Korner, et al., Phys. Rev. E 88, 012705 (2013).

  19. E. Schneck, I. Rodriguez-Loureiro, L. Bertinetti, et al., J. Phys. D: Appl. Phys. 50 (10), 104001 (2017).

  20. D. F. Willson, P. R. Chess, Z. Wang, et al., The Respiratory Tract in Pediatric Critical Illness and Injury (Springer, 2009), p. 1.

    Google Scholar 

  21. A. D. Bangham, Medical Applications of Liposomes (Elsevier Science, 1998), p. 452.

    Google Scholar 

  22. O. A. Rozenberg, Obshch. Reanimatol. 10 (4), 51 (2014).

    Article  Google Scholar 

  23. V. N. Morozov, I. L. Kanev, A. Y. Mikheev, et al., J. Aerosol Sci. 69, 48 (2014).

    Article  ADS  Google Scholar 

  24. M. Brust, M. Walker, D. Bethell, et al., J. Chem. Soc. Chem. Commun. 801 (1994).

  25. O. Rosenberg, A. Seiliev, and A. Zhuikov, Liposome Technology (CRC Press, 2006), p. 343

    Google Scholar 

  26. O. A. Rosenberg, A. E. Bautin, and A. A. Seiliev, Int. J. Biomed. 8, 253 (2018).

    Article  Google Scholar 

  27. L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  ADS  Google Scholar 

  28. J. M. Bloch, W. B. Yun, and X. Yang, Phys. Rev. Lett. 61 (26), 2941 (1988).

    Article  ADS  Google Scholar 

  29. D. J. Wales and J. A. Kitchen, Chem. Cent. J. 10, 72 (2016).

    Article  Google Scholar 

  30. A. Singh, M. K. Mukhopadhyay, M. K. Sanyal, et al., J. Phys.: Condens. Matter 31 (49), 495803 (2019).

  31. W. Bu, H. Yu, and G. Luo, J. Phys. Chem. B 118 (36), 10662 (2014).

    Article  Google Scholar 

  32. B. Onghena, E. Papagni, E. R. Souza, et al., RSC Adv. 8, 32044 (2018).

    Article  ADS  Google Scholar 

  33. P. Gismondi, A. Kuzmin, C. Unsworth, et al., Langmuir 38 (1), 203 (2022).

    Article  Google Scholar 

  34. R. J. Ellis, Y. Meridiano, R. Chiarizia, et al., Chem. Eur. J. 19 (8), 2663 (2013).

    Article  Google Scholar 

  35. A. A. Chernyshov, A. A. Veligzhanin, and Ya. V. Zubavichus, Nucl. Instrum. Methods Phys. Res. A 603, 95 (2009).

    Article  ADS  Google Scholar 

  36. M. Newville, J. Phys.: Conf. Ser. 430, 012007 (2013).

  37. A. L. Ankudinov, B. Ravel, J. J. Rehr, et al., Phys. Rev. B 58, 7565 (1998).

    Article  ADS  Google Scholar 

  38. T. A. Beineke and J. Delgaudio, Inorg. Chem. 7 (4), 715 (1968).

    Article  Google Scholar 

  39. M. G. Ferrier, B. W. Stein, S. E. Bone, et al., Chem. Sci. 9, 7078 (2018).

    Article  Google Scholar 

  40. M. Louvel, B. Etschmann, Q. Guan, et al., Nat. Commun. 13, 1456 (2022).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (grant no. 0706-2020-0026) and the Russian Foundation for Basic Research, project no. 19-29-12052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Novikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakunin, S.N., Novikova, N.N., Rogachev, A.V. et al. Spectral-Selective X-Ray Studies at the “Langmuir” Beamline of the Kurchatov Synchrotron Radiation Source. Crystallogr. Rep. 67, 799–812 (2022). https://doi.org/10.1134/S1063774522060293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522060293

Navigation