Skip to main content
Log in

Fine Structure of Diffraction Losses in Single-Crystal X-Ray Lenses

  • DIFFRACTION AND SCATTERING OF IONIZING RADIATIONS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Single-crystal planar compound refractive lenses under diffraction losses (glitches) conditions, when a part of radiation incident on an optical element diffracts from some set of atomic planes, have been investigated. A detailed experimental study using synchrotron radiation of the influence of glitches on the focal spot formed by lenses has been performed. An analysis of the data obtained showed that diffraction losses arise on different parts of the parabolic lens profile due to the refraction effect at radiation energies differing by a few electronvolts. As a result, the shape of the focused beam changes with a change in energy near the energy of the glitch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, Nature 384 (6604), 49 (1996). https://doi.org/10.1038/384049a0

    Article  ADS  Google Scholar 

  2. N. Dubrovinskaia, L. Dubrovinsky, N. Solopova, et al., Sci. Adv. 2, e1600341 (2016). https://doi.org/10.1126/sciadv.1600341

  3. B. Lengeler, C. Schroer, B. Benneret, et al., J. Synchrotron Radiat. 9, 119 (2002). https://doi.org/10.1107/S0909049502003436

    Article  Google Scholar 

  4. B. Lengeler, C. Schroer, M. Kuhlmann, et al., J. Phys. D: Appl. Phys. 38 (10A), A218 (2005). https://doi.org/10.1088/0022-3727/38/10A/042

    Article  Google Scholar 

  5. L. Zhang, A. Snigirev, I. Snigireva, et al., Proc. SPIE 5539, 48 (2004). https://doi.org/10.1117/12.568105

    Article  ADS  Google Scholar 

  6. P. Roedig, H. Ginn, T. Pakendorf, et al., Nat. Met. 14, 805 (2017). https://doi.org/10.1038/nmeth.4335

    Article  Google Scholar 

  7. M. Polikarpov, H. Emerich, N. Klimova, et al., Proc. SPIE 10235, 102350H (2017). https://doi.org/10.1117/12.2266832

  8. N. Klimova, O. Yefanov, and A. Snigirev, AIP Conf. Proc. 2299, 060016 (2020). https://doi.org/10.1063/5.0030507

  9. N. Klimova, O. Yefanov, I. Snigireva, and A. Snigirev, Crystals 11 (5), 504 (2021). https://doi.org/10.3390/cryst11050504

    Article  Google Scholar 

  10. https://github.com/XrayViz/Glitches

  11. N. Klimova, I. Snigireva, A. Snigirev, and O. Yefanov, Crystals 11 (12), 1561 (2021). https://doi.org/10.3390/cryst11121561

    Article  Google Scholar 

  12. N. Klimova, I. Snigireva, A. Snigirev, and O. Yefanov, J. Synchrotron Radiat. 29, 369 (2022). https://doi.org/10.1107/S1600577521013667

    Article  Google Scholar 

  13. C. G. Schroer, B. Lengler, B. Benner, et al., Proc. SPIE 4145, 274 (2001). https://doi.org/10.1117/12.411647

    Article  ADS  Google Scholar 

  14. S. Terentyev, M. Polikarpov, I. Snigireva, et al., J. Synchrotron Radiat. 24, 103 (2017). https://doi.org/10.1107/S1600577516017331

    Article  Google Scholar 

  15. V. Yunkin, M. Grigoriev, S. Kuznetsov, et al., Proc. SPIE 55, 39 (2004). https://doi.org/10.1117/12.564872

    Article  Google Scholar 

  16. A. Snigirev, I. Snigireva, M. Grigoriev, et al., Proc. SPIE 6705, 670506 (2007). https://doi.org/10.1117/12.733609

  17. I. Snigireva, A. Snigirev, V. Yunkin, et al., AIP Conf. Proc. 705, 708 (2004). https://doi.org/10.1063/1.1757894

    Article  ADS  Google Scholar 

  18. G. Kohn, A. G. Kulikov, P. A. Prosekov, et al., J. Synchrotron Radiat. 27, 378 (2020). https://doi.org/10.1107/S1600577519017247

    Article  Google Scholar 

  19. V. G. Kohn, P. A. Prosekov, A. Yu. Seregin, et al., Crystallogr. Rep. 64 (1), 24 (2019). https://doi.org/10.1134/S0023476119010144

    Article  ADS  Google Scholar 

  20. A. Authier, Dynamical Theory of X-ray Diffraction (Oxford Univ. Press, New York, 2003), p. 661. https://doi.org/10.1093/acprof:oso/9780198528920.001.0001

    Book  MATH  Google Scholar 

  21. https://x-server.gmca.aps.anl.gov

Download references

ACKNOWLEDGMENTS

We are grateful to O. Yefanov (CFEL@DESY, Germany) for the help in planning the experiment, processing the data obtained, and participation in the preparation of this publication, as well as to I.A. Shchelokov for the help in the preparation of this publication.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (grant no. 075-15-2021-1362) and the Russian Foundation for Basic Research, project no 19-29-12043mk. N.B. Klimova acknowledges the partial support within the Russian Federal Academic Leadership Program Priority 2030 at the Immanuel Kant Baltic Federal University. V.A. Yunkin acknowledges the partial support within State assignment no. 075-00706-22-00. P.A. Prosekov acknowledges the partial support within the State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” RAS. M. N. Sorokovikov acknowledges the partial support within the reported study was funded by Immanuel Kant Baltic Federal University, project number 121122900221-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Klimova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimova, N.B., Barannikov, A.A., Sorokovikov, M.N. et al. Fine Structure of Diffraction Losses in Single-Crystal X-Ray Lenses. Crystallogr. Rep. 67, 838–844 (2022). https://doi.org/10.1134/S1063774522060128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522060128

Navigation