Skip to main content
Log in

Investigation of the Mechanism of Influence of Stress Corrosion on the Development of Macroplastic Instabilities of Aluminum–Magnesium Alloy

  • REAL STRUCTURE OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Macroscopic jumps of plastic deformation (few percent in amplitude) on creep curves of aluminum–magnesium alloy, caused by a local effect of concentrated solution of hydrochloric acid on the alloy surface, have been revealed and investigated using a complex of high-speed methods for studying the dynamics of deformation bands and discontinuous deformation. Results of computer simulation of the formation of fractal morphology of the corrosion front and elastic stress fields under stress-corrosion conditions are presented. It is shown that, in the complex structure of corrosion boundary, containing “peninsulas” and “fjords,” the level of local stress at fjord vertices exceeds the level of applied stress by ~1–1.5 orders of magnitude, which may lead to collective responce of many dislocation sources and development of macroscopic dislocation avalanche, causing a strain jump in the creep curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Portevin and F. Le Chatelier, C R. Acad. Sci. Paris 176, 507 (1923).

    Google Scholar 

  2. F. Savart, Ann. Chim. Fhys. 65, 337 (1837).

    Google Scholar 

  3. E. N. da C. Andrade, Proc. Roy. Soc. A 84, 1 (1910).

    ADS  Google Scholar 

  4. J. F. Bell, The Experimental Fundamentals of Solid Mechanics (Springer, Berlin, 1984).

    Google Scholar 

  5. A. A. Shibkov, M. A. Lebyodkin, T. A. Lebedkina, et al., Phys. Rev. E 102, 043003 (2020). https://doi.org/10.1103/PhysRevE.102.043003

  6. V. V. Dubinin and G. F. Rudzei, Korroz.: Mater., Zashch., No. 12, 19 (2013).

  7. V. B. Grigorenko, L. V. Morozova, I. P. Zhegina, and M. A. Fomina, Tr. VIAM 7 (43), 3 (2016). https://doi.org/10.18577/2307-6046-2016-0-7-1-1

    Article  Google Scholar 

  8. R. Chlistovsky, R. Heffeman, and D. Duquesnay, Int. J. Fatigue 29 (9–11), 1941 (2007). https://doi.org/10.1016/j.ijfatigue.2007.01.010

    Article  Google Scholar 

  9. K. Jones and D. W. Hoeppner, Corros. Sci. 48 (10), 3109 (2006). https://doi.org/10.1016/j.corsci.2005.11.008

    Article  Google Scholar 

  10. E. N. Kablov, O. V. Startsev, I. M. Medvedev, and S. V. Panin, Korroz.: Mater., Zashch., No. 12, 6 (2013).

  11. M. Reboul and B. Baroux, Mater. Corros. 62, 215 (2011). https://doi.org/10.1002/maco.201005650

    Article  Google Scholar 

  12. H. Yukama, Y. Murata, M. Morinaga, et al., Acta Metall. Mater. 43, 681 (1995). https://doi.org/10.1016/0956-7151(94)00266-K

    Article  Google Scholar 

  13. J. L. Searles, Metall. Mater. Trans. A 32, 2859 (2001). https://doi.org/10.1007/s11661-001-1036-3

    Article  Google Scholar 

  14. G. R. Argade, N. Kumar, and R. S. Mishra, Mater. Sci. Eng. A 565, 80 (2013). https://doi.org/10.1016/j.msea.2012.11.066

    Article  Google Scholar 

  15. S. Vargel, Corrosion of Aluminium (Elsevier, Oxford, 2004).

    Book  Google Scholar 

  16. P. R. Swann and H. W. Pickering, Corrosion 19, 369t (1963). https://doi.org/10.5006/0010-9312-19.11.369

    Article  Google Scholar 

  17. A. H. Cottrell, Philos. Mag. 44 (355), 829 (1953). https://doi.org/10.1080/14786440808520347

    Article  Google Scholar 

  18. Y. Estrin and L. P. Kubin, Spatial Coupling and Propagative Plastic Instabilities, in Continuum Models for Materials with Microstructure, Ed. by H.-B. Muhlhaus (Wiley, New York, 1995), p. 395.

    Google Scholar 

  19. A. J. Yilmaz, Sci. Technol. Adv. Mater. 12, 16 (2011). https://doi.org/10.1088/1468-6996/12/6/063001

    Article  Google Scholar 

  20. Y. Brechet and Y. Estrin, Scr. Metall. Mater. 31, 185 (1994). https://doi.org/10.1016/0956-716X(94)90172-4

    Article  Google Scholar 

  21. Y. Brechet and Y. Estrin, Acta Metall. Mater. 43 (3), 955 (1995). https://doi.org/10.1016/0956-7151(94)00334-E

    Article  Google Scholar 

  22. L. P. Kubin, C. Fressengeas, and G. Ananthakrishna, Dislocations in Solids, Vol. 11, Ed. by F. R. N. Nabarro and J. P. Hirth (Elsevier Science, 2001).

    Google Scholar 

  23. A. A. Shibkov, M. F. Gasanov, M. A. Zheltov, et al., Int. J. Plast. 86, 37 (2016). https://doi.org/10.1016/j.ijplas.2016.07.014

    Article  Google Scholar 

  24. A. A. Shibkov and A. E. Zolotov, JETP Lett. 90 (5), 370 (2009).

    Article  ADS  Google Scholar 

  25. A. A. Shibkov, M. A. Zheltov, M. F. Gasanov, et al., Crystallogr. Rep. 65 (6), 836 (2020). https://doi.org/10.1134/S1063774520060310

    Article  ADS  Google Scholar 

  26. M. Madrigal-Canoa, J. M. Hallena, E. M. Arce-Estradaa, and Tu Line Manha, Comput. Mater. Sci. 161, 394 (2019). https://doi.org/10.1016/j.commatsci.2019.02.016

    Article  Google Scholar 

  27. P. T. Brewick, N. Kota, A. C. Lewis, et al., Corros. Sci. 129, 54 (2017). https://doi.org/10.1016/j.corsci.2017.09.009

    Article  Google Scholar 

  28. P. T. Brewick, V. G. DeGiorgi, A. B. Geltmacher, and S. M. Qidwai, Corros. Sci. 158, 108111 (2019). https://doi.org/10.1016/j.corsci.2019.108111

  29. G. Edgar, Classics on Fractals (Westview, Boulder, 2004).

    MATH  Google Scholar 

  30. J. Feder, Fractals (Plenum, New York, 1988).

  31. R. Hill, Mathematical Theory of Plasticity (Clarendon, Oxford, 1950).

    MATH  Google Scholar 

  32. P. Ch. Ivanov, L. N. Amaral, A. L. Goldberger, et al., Nature 399 (3), 461 (1999). https://doi.org/10.1038/20924

    Article  ADS  Google Scholar 

  33. T. A. Lebedkina and M. A. Lebyodkin, Acta Mater. 56, 5567 (2008). https://doi.org/10.1016/j.actamat.2008.07.025

    Article  ADS  Google Scholar 

  34. H. J. Jensen, Self-Organized Criticality (Cambridge University Press, Cambridge, 1998).

    Book  Google Scholar 

  35. P. Bak, C. Tang, and K. Wiessenfeld, Phys. Rev. A 38 (1), 364 (1988). https://doi.org/10.1103/PhysRevA.38.364

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The experimental part of the study, supported by the Russian Foundation for Basic Research (RFBR) (grant no. 19-08-00395), was performed on equipment of the Center of Collective Use of Derzhavin Tambov State University, with partial support of the Ministry of Science and Higher Education of the Russian Federation within the project according to agreement no. 075-15-2021-709 (unique project identifier RF—2296.61321X0037). The computer studies were supported by RFBR (grant no. 19-38-90145 “Aspiranty”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shibkov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibkov, A.A., Kochegarov, S.S., Denisov, A.A. et al. Investigation of the Mechanism of Influence of Stress Corrosion on the Development of Macroplastic Instabilities of Aluminum–Magnesium Alloy. Crystallogr. Rep. 67, 156–165 (2022). https://doi.org/10.1134/S106377452202016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377452202016X

Navigation