Skip to main content
Log in

Early Stage of Structural Changes and Molecular Dynamics of Cytochrome C in an Aqueous Solution Caused by the Addition of Methanol

  • STRUCTURE OF MACROMOLECULAR COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations of horse heart cytochrome C were performed in an aqueous solution and in a 50 : 50 water–methanol mixture. Three independent 100-ns trajectories were run for each system. It was shown that the addition of methanol significantly affects the mobility of atoms in the cytochrome C molecule in the region from valine 20 to proline 30, which belongs to one of the known cardiolipin-binding sites. During 100-ns MD simulations, the coordination bond between the heme iron atom and the sulfur atom of the nearest methionine is not cleaved, its length is not significantly changed, and the distances from the heme to the residues responsible for fluorescence remain unchanged, as opposed to other studies, in which such changes were observed upon the addition of methanol to cytochrome C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Z. Zhang, L. Huang, V. M. Shulmeister, et al., Nature 392 (6677), 677 (1998). https://doi.org/10.1038/33612

    Article  ADS  Google Scholar 

  2. J. C. Goldstein, N. J. Waterhouse, P. Juin, et al., Nat. Cell. Biol. 2 (3), 156 (2000). https://doi.org/10.1038/35004029

    Article  Google Scholar 

  3. G. W. Bushnell, G. V. Louie, and G. D. Brayer, J. Mol. Biol. 214 (2), 585 (1990). https://doi.org/10.1016/0022-2836(90)90200-6

    Article  Google Scholar 

  4. S. Hirota, M. Ueda, Y. Hayashi, et al., J. Biochem. 152 (6), 521 (2012). https://doi.org/10.1093/jb/mvs098

    Article  Google Scholar 

  5. J. Muenzner and E. V. Pletneva, Chem. Phys. Lipids 179, 57 (2014). https://doi.org/10.1016/j.chemphyslip.2013.11.002

    Article  Google Scholar 

  6. S. Hirota, Y. Hattori, S. Nagao, et al., PNAS 107 (29), 12854 (2010). https://doi.org/10.1073/pnas.1001839107

    Article  ADS  Google Scholar 

  7. P. P. Parui, M. S. Deshpande, S. Nagao, et al., Biochem. 52 (48), 8732 (2013). https://doi.org/10.1021/bi400986g

    Article  Google Scholar 

  8. M. S. Deshpande, P. P. Parui, H. Kamikubo, et al., Biochem. 53 (28), 4696 (2014). https://doi.org/10.1021/bi500497s

    Article  Google Scholar 

  9. V. E. Bychkova, A. E. Dujsekina, S. I. Klenin, et al., Biochem. 35 (19), 6058 (1996). https://doi.org/10.1021/bi9522460

    Article  Google Scholar 

  10. R. Grandori, Protein Sci. 11 (3), 453 (2002).

    Article  Google Scholar 

  11. Y. O. Kamatari, T. Konno, M. Kataoka, et al., J. Mol. Biol. 259 (3), 512 (1996). https://doi.org/10.1006/jmbi.1996.0336

    Article  Google Scholar 

  12. D. A. Case, T. E. Cheatham, III, T. Darden, et al., J. Comput. Chem. 26 (16), 1668 (2005). https://doi.org/10.1002/jcc.20290

    Article  Google Scholar 

  13. M. J. Abraham, T. Murtola, R. Schulz, et al., Softwarex 1, 19 (2015). https://doi.org/10.1016/j.softx.2015.06.001

    Article  ADS  Google Scholar 

  14. A. W. S. Da Silva and W. F. Vranken, BMC Res. Notes 5 (1), 367 (2012). https://doi.org/10.1186/1756-0500-5-367

    Article  Google Scholar 

  15. D. A. Giammona, Ph. D. Thesis (Davis, University of California, 1984).

  16. J. A. Maier, C. Martinez, K. Kasavajhala, et al., J. Chem. Theory Comput. 11 (8), 3696 (2015). https://doi.org/10.1021/acs.jctc.5b00255

    Article  Google Scholar 

  17. H. J. Berendsen, J. V. Postma, W. F. van Gunsteren, et al., J. Chem. Phys. 81 (8), 3684 (1984). https://doi.org/10.1063/1.448118

    Article  ADS  Google Scholar 

  18. M. Parrinello and A. Rahman, J. Chem. Phys. 76 (5), 2662 (1982). https://doi.org/10.1063/1.448118

    Article  ADS  Google Scholar 

  19. G. K. Vladimirov, Candidate’s Dissertation in Biology (RNIMU, Moscow, 2018).

  20. V. E. Kagan, H. A. Bayır, N. A. Belikova, et al., Free Radic. Biol. Med. 46 (11), 1439 (2009). https://doi.org/10.1016/j.freeradbiomed.2009.03.004

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 19-14-00244; molecular dynamics simulations) and the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences (analysis of the results of molecular modeling).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Korotkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotkova, P.D., Yurchenko, A.A., Timofeev, V.I. et al. Early Stage of Structural Changes and Molecular Dynamics of Cytochrome C in an Aqueous Solution Caused by the Addition of Methanol. Crystallogr. Rep. 67, 229–232 (2022). https://doi.org/10.1134/S1063774522020079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522020079

Navigation