Skip to main content
Log in

Small-Angle Neutron Diffraction for Studying Ferromagnetic Inverse Opal-Like Structures

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The review is focused on the use of small-angle polarized-neutron diffraction to describe the orientation of local magnetization vector in spatially ordered magnetic metamaterials. The objects of study are direct and inverse opals; these materials are synthesized for diverse applications in magnetooptics, micro- and nanoelectronics, and photonics. The methodology of experiments and the theoretical base for processing experimental results are considered in detail. It is shown that the method of small-angle diffraction of polarized neutrons is unique in solving such problems; it is used at the limit of its possibilities when studying the magnetic structure under an applied field on the scale of ~400–800 nm. The questions of frustration of local magnetization vectors are discussed using the structural data on direct and inverse opals, obtained by ultra-small-angle diffraction of synchrotron radiation. The existing methods for synthesizing direct and inverse opals, which make it possible to obtain metamaterials with a three-dimensional ordered structure of nanoparticles, are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

Similar content being viewed by others

REFERENCES

  1. S. John, Phys. Rev. Lett. 58 (23), 2486 (1987). https://doi.org/10.1103/PhysRevLett.58.2486

    Article  ADS  Google Scholar 

  2. E. Yablonovitch, Phys. Rev. Lett. 58 (20), 2059 (1987). https://doi.org/10.1103/PhysRevLett.58.2059

    Article  ADS  Google Scholar 

  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995).

    MATH  Google Scholar 

  4. T. F. Krauss and R. M. De La Rue, Prog. Quantum Electron. 23 (2), 51 (1999). https://doi.org/10.1016/S0079-6727(99)00004-X

    Article  ADS  Google Scholar 

  5. Z. Cheng, W. B. Russel, and P. M. Chaikin, Nature 401 (6756), 893 (1999). https://doi.org/10.1038/44785

    Article  ADS  Google Scholar 

  6. L. Meng, H. Wei, A. Nagel, et al., Nano Lett. 11 (8), 2249 (2006). https://doi.org/10.1021/nl061626b

    Article  ADS  Google Scholar 

  7. J. H. J. Thijssen, A. V. Petukhov, D. C. Hart, et al., Adv. Mater. 18 (13), 1662 (2006). https://doi.org/10.1002/adma.200502732

    Article  Google Scholar 

  8. A. van Blaaderen and P. Wiltzius, Science 270 (5239), 1177 (1995). https://www.jstor.org/stable/2889216.

    Article  ADS  Google Scholar 

  9. A. L. Rogach, N. A. Kotov, D. S. Koktysh, et al., Chem. Mater. 12 (9), 2721 (2000). https://doi.org/10.1021/cm000274l

    Article  Google Scholar 

  10. H. Wei, L. Meng, Y. Jun, and D. J. Norris, App. Phys. Lett. 89 (24), 241913 (2006). https://doi.org/10.1063/1.2404973

    Article  ADS  Google Scholar 

  11. Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, et al., Phys. Rev. E 61, 5784 (2000). https://doi.org/10.1103/PhysRevE.61.5784

    Article  ADS  Google Scholar 

  12. R. Rengarajan, D. Mittleman, Ch. Rich, and V. Colvin, Phys. Rev. E 71, 016615 (2005). https://doi.org/10.1103/PhysRevE.71.016615

    Article  ADS  Google Scholar 

  13. S. V. Grigor’ev, K. S. Napol’skii, and N. A. Sapoletova, et al. RF Patent No. RU 2371525 C2 (2009), Byull. Izobret., 2009, no. 31, p. 42.

  14. J. Hilhorst, V. V. Abramova, A. Sinitskii, et al., Langmuir 25 (17), 10408 (2009). https://doi.org/10.1021/la900983v

    Article  Google Scholar 

  15. A. A. Eliseev, D. F. Gorozhankin, K. S. Napol’skii, et al., JETP Lett. 90 (4), 272 (2009). https://doi.org/10.1134/S0021364009160103

    Article  ADS  Google Scholar 

  16. K. S. Napolskii, N. A. Sapoletova, D. F. Gorozhankin, et al., Langmuir 26 (4), 2346 (2010). https://doi.org/10.1021/la902793b

    Article  Google Scholar 

  17. A. V. Vasil’eva, S. V. Grigor’ev, N. A. Grigor’eva, et al., Phys. Solid State 52 (5), 1087 (2010). https://doi.org/10.1134/S1063783410050409

    Article  ADS  Google Scholar 

  18. N. A. Sapoletova, N. A. Martynova, K. C. Napol’skii, et al., Phys. Solid State 53 (6), 1126 (2011). https://doi.org/10.1134/S106378341106031X

    Article  ADS  Google Scholar 

  19. N. A. Grigor’eva, A. V. Petukhov, and G. Ya. Vruge, Nondestructive Methods for Studying the Structure of Nanomaterials: A Teaching and Methodical Textbook (Solo, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  20. A. K. Samusev, I. S. Sinev, K. B. Samusev, et al., Phys. Solid State 54 (10), 2073 (2012).

    Article  ADS  Google Scholar 

  21. A. K. Samusev, K. B. Samusev, I. S. Sinev, et al., Light and Small Angle X-ray Diffraction from Opal-Based Structures, in Optical Properties of Photonic Structures: Interplay of Order and Disorder, Ed. by M. F. Limonov and R. De La Rue (Taylor and Francis, 2012).

    Google Scholar 

  22. A. V. Chumakova, A. A. Mistonov, A. A. Vorobiev, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7 (6), 1234 (2013). https://doi.org/10.1134/S1027451013130041

    Article  Google Scholar 

  23. V. M. Masalov, E. A. Kudrenko, N. A. Grigoryeva, et al., NANO 8, 1350036 (2013). https://doi.org/10.1142/S1793292013500367

    Article  Google Scholar 

  24. K. S. Napolskii, A. S. Sinitskii, S. V. Grigoriev, et al., Physica B 397, 23 (2007). https://doi.org/10.1016/j.physb.2007.02.072

    Article  ADS  Google Scholar 

  25. S. V. Grigor’ev, K. S. Napol’skii, N. A. Grigor’eva, et al., JETP Lett. 87 (1), 12 (2008). https://doi.org/10.1134/S0021364008010049

    Article  ADS  Google Scholar 

  26. V. V. Abramova, A. S. Sinitskii, N. A. Grigor’eva, et al., JETP 109 (1), 29 (2009).

    Article  ADS  Google Scholar 

  27. S. V. Grigoriev, K. S. Napolskii, N. A. Grigoryeva, et al., Phys. Rev. B 79, 045123 (2009). https://doi.org/10.1103/PhysRevB.79.045123

    Article  ADS  Google Scholar 

  28. A. Sinitskii, V. Abramova, N. Grigorieva, et al., Europhys. Lett. 89, 14002 (2010). https://doi.org/10.1209/0295-5075/89/14002

    Article  ADS  Google Scholar 

  29. S. V. Grigoriev, K. S. Napolskii, N. A. Grigoryeva, et al., J. Phys.: Conf. Ser. 247, 012029 (2010). https://doi.org/10.1088/1742-6596/247/1/012029

    Article  Google Scholar 

  30. N. A. Grigoryeva, A. A. Mistonov, K. S. Napolskii, et al., Phys. Rev. B 84 (6), 064405 (2011). https://doi.org/10.1103/PhysRevB.84.064405

    Article  ADS  Google Scholar 

  31. M. Kostylev, A. A. Stashkevich, Y. Roussigne, et al., Phys. Rev. B 86 (18), 184431 (2012). https://doi.org/10.1103/PhysRevB.86.184431

    Article  ADS  Google Scholar 

  32. A. A. Mistonov, N. A. Grigoryeva, A. V. Chumakova, et al., Phys. Rev. B 87 (22), 220408 (2013). https://doi.org/10.1103/PhysRevB.87.220408

    Article  ADS  Google Scholar 

  33. A. V. Chumakova, G. A. Valkovskiy, A. A. Mistonov, et al., Phys. Rev. B 90 (22), 144103 (2014). https://doi.org/10.1103/PhysRevB.90.144103

    Article  ADS  Google Scholar 

  34. A. A. Mistonov, I. S. Shishkin, I. S. Dubitskii, et al., JETP 120 (5), 844 (2015). https://doi.org/10.7868/S0044451015050122

    Article  ADS  Google Scholar 

  35. I. S. Shishkin, A. A. Mistonov, N. A. Grigor’eva, et al., Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. 10 (1), 156 (2016). https://doi.org/10.7868/S020735281602013X

    Article  Google Scholar 

  36. I. S. Shishkin, A. A. Mistonov, I. S. Dubitskiy, et al., Phys. Rev. B 94, 064424 (2016). https://doi.org/10.1103/PhysRevB.94.064424

    Article  ADS  Google Scholar 

  37. I. S. Dubitskiy, A. V. Syromyatnikov, N. A. Grigoryeva, et al., J. Magn. Magn. Mater. 441, 609 (2017). https://doi.org/10.1016/j.jmmm.2017.06.036

    Article  ADS  Google Scholar 

  38. I. S. Dubitskii, N. A. Grigor’eva, A. A. Mistonov, et al., Phys. Solid State 59 (12), 2464 (2017). https://doi.org/10.21883/FTT.2017.12.45245.071

    Article  ADS  Google Scholar 

  39. I. S. Dubitskiy, AA. Mistonov, N. A. Grigoryeva, and S. V. Grigoriev, Physica B 549, 107 (2018). https://doi.org/10.1016/j.physb.2017.10.093

    Article  ADS  Google Scholar 

  40. A. A. Mistonov, I. S. Dubitskiy, I. S. Shishkin, et al., J. Magn. Magn. Mater. 477, 99 (2019). https://doi.org/10.1016/j.jmmm.2019.01.016

    Article  ADS  Google Scholar 

  41. A. A. Bykov, D. M. Gokhfeld, N. E. Savitskaya, et al., Supercond. Sci. Technol. 32 (11), 115004 (2019). https://doi.org/10.1088/1361-6668/ab3db7

    Article  ADS  Google Scholar 

  42. W. Stober, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26 (1), 62 (1968).

    Article  ADS  Google Scholar 

  43. V. N. Bogomolov, L. S. Parfen’ev, A. V. Prokof’ev, et al., Fiz. Tverd. Tela 37, 3411 (1995).

    Google Scholar 

  44. V. M. Masalov, N. S. Sukhinina, E. A. Kudrenko, and G. A. Emelchenko, Nanotechnology 22, 275718 (2011). https://doi.org/10.1088/0957-4484/22/27/275718

    Article  ADS  Google Scholar 

  45. J. W. Goodwin, J. Hearn, C. C. Ho, and R. H. Ottewill, Colloid Polym. Sci. 252 (6), 464 (1974). https://doi.org/10.1007/BF01554752

    Article  Google Scholar 

  46. H. Miguez, C. Lopez, F. Meseguer, et al., App. Phys. Lett. 71 (9), 1148 (1997). https://doi.org/10.1063/1.119849

    Article  ADS  Google Scholar 

  47. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11 (8), 2132 (1999). https://doi.org/10.1021/cm990080+

    Article  Google Scholar 

  48. D. J. Norris, E. G. Arlinghaus, L. Meng, et al., Adv. Mater. 16 (16), 1393 (2004). https://doi.org/10.1002/adma.200400455

    Article  Google Scholar 

  49. A. I. Plekhanov, D. V. Kalinin, and V. V. Serdobintseva, Ross. Nanotechnol. 1, 245 (2006).

    Google Scholar 

  50. D. W. McComb, B. M. Treble, C. J. Smith, et al., J. Mater. Chem. 11 (1), 142 (2001). https://doi.org/10.1039/B003191G

    Article  Google Scholar 

  51. O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenfoff, Chem. Mater. 10 (11), 3597 (1998). https://doi.org/10.1021/cm980444i

    Article  Google Scholar 

  52. C. F. Blanford, T. N. Do, B. T. Holland, and A. Stein, Mater. Res. Soc. Symp. Proc. 549, 61 (1999). https://doi.org/10.1557/PROC-549-61

    Article  Google Scholar 

  53. A. Richel, N. P. Johnson, and D. W. McComb, Appl. Phys Lett. 76 (14), 1816 (2000). https://doi.org/10.1063/1.126175

    Article  ADS  Google Scholar 

  54. B. T. Holland, C. F. Blanford, and A. Stein, Chem. Mater. 11 (3), 795 (1999). https://doi.org/10.1021/cm980666g

    Article  Google Scholar 

  55. S. H. Park and Y. Xia, Chem. Mater. 10 (7), 1745 (1998). https://doi.org/10.1021/cm020100z

    Article  Google Scholar 

  56. H. Yan, C. F. Blanford, J. C. Lytle, et al., Chem. Mater. 13 (11), 4314 (2001). https://doi.org/10.1021/cm0105716

    Article  Google Scholar 

  57. B. T. Holland, C. F. Blanford, and A. Stein, Science 281 (5376), 538 (1998). https://doi.org/10.1126/science.281.5376.538

    Article  ADS  Google Scholar 

  58. J. E. G. J. Wijnhoven and W. L. Vos, Science 281 (5378), 802 (1998). https://doi.org/10.1126/science.281.5378.802

    Article  ADS  Google Scholar 

  59. S. A. Johnson, P. J. Ollivier, and T. E. Mallouk, Science 283, 963 (1999). https://doi.org/10.1126/science.283.5404.963

    Article  ADS  Google Scholar 

  60. B. Gates, Y. Yin, and Y. Xia, Chem. Mater. 11 (10), 2827 (1999). https://doi.org/10.1021/cm990195d

    Article  Google Scholar 

  61. J. F. Bertone, P. Jiang, K. S. Hwang, et al., Phys. Rev. Lett. 83, 300 (1999). https://doi.org/10.1103/PhysRevLett.83.300

    Article  ADS  Google Scholar 

  62. M. Deutsch, Y. A. Vlasov, and D. J. Norris, Adv. Mater. 12 (16), 1176 (2000). https://doi.org/10.1002/1521-4095(200008)12:16<1176::AID-ADMA1176>3.0.CO;2-H

    Article  Google Scholar 

  63. H. Miguez, F. Meseguer, C. Lopez, et al., Adv. Mater. 13 (6), 393 (2001). https://doi.org/10.1002/1521-4095(200103)13:6<393::AID-ADMA393>3.0.CO;2-4

    Article  Google Scholar 

  64. M. E. Turner, T. J. Trentler, and V. L. Colvin, Adv. Mater. 13 (6), 180 (2001). https://doi.org/10.1002/1521-4095(200102)13:3<180::AID-ADMA180>3.0.CO;2-Y

    Article  Google Scholar 

  65. P. V. Braun and P. Wiltzius, Adv. Mater. 13 (7), 482 (2001). https://doi.org/10.1002/1521-4095(200104)13:7<482::AID-ADMA482>3.0.CO;2-4

    Article  Google Scholar 

  66. T. Sumida, Y. Wada, T. Kitamura, and S. Yanagida, Chem. Lett. 30 (1), 38 (2001). https://doi.org/10.1246/cl.2001.38

    Article  Google Scholar 

  67. Y. C. Lee, T. J. Kuo, C. J. Hsu, et al., Langmuir 18, 9942 (2002). https://doi.org/10.1021/la020296h

    Article  Google Scholar 

  68. J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, et al., Adv. Mater. 12 (12), 888 (2000). https://doi.org/10.1002/1521-4095(200006)12:12<888::AID-ADMA888>3.0.CO;2-T

    Article  Google Scholar 

  69. L. Xu, W. L. Zhou, C. Frommen, et al., Chem. Commun. 12, 997 (2000). https://doi.org/10.1039/B000404I

    Article  Google Scholar 

  70. Q. Luo, Z. Liu, L. Li, et al., Adv. Mater. 13 (4), 286 (2001). https://doi.org/10.1002/1521-4095(200102)13:4<286::AID-ADMA286>3.0.CO;2-5

    Article  Google Scholar 

  71. P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, Faraday Discussion. 125, 117 (2004). https://doi.org/10.1039/B304116F

    Article  ADS  Google Scholar 

  72. S. Nikitenko, A. M. Beale, A. M. J. van der Eerden, et al., J. Synchrotron Radiat. 15, 632 (2008). https://doi.org/10.1107/S0909049508023327

    Article  Google Scholar 

  73. A. V. Petukhov, J. H. J. Thijssen, D. C. Hart, et al., J. Appl. Crystallogr. 39, 137 (2006). https://doi.org/10.1107/S0021889805041774

    Article  Google Scholar 

  74. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, Nature 384 (6604), 49 (1996). https://doi.org/10.1038/384049a0

    Article  ADS  Google Scholar 

  75. M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, Appl. Phys. Lett. 86 (1), 014102 (2005). https://doi.org/10.1063/1.1843282

    Article  ADS  Google Scholar 

  76. W. L. Bragg, Proc. Cambridge Philos. Soc. 17, 43 (1914).

    Google Scholar 

  77. J. M. Cowley, Diffraction Physics (Elsevier, Amsterdam, 1995).

    Google Scholar 

  78. P. Debye, Ann. Physik 43, 49 (1914).

    Google Scholar 

  79. J. Waller, Z. Physik 17, 398 (1923).

    Article  ADS  Google Scholar 

  80. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969; Nauka, Moscow, 1970).

  81. D. I. Svergun and L. A. Feigin, X-ray and Small-Angle Neutron Scattering (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  82. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics (Gostekhizdat, Moscow, 1948; Pergamon, New York, 1977).

  83. G. V. Wulff, Nature 1, 16 (1913).

    Google Scholar 

  84. A. Guinier and G. Fournet, Small-Angle Scattering of X-rays (Wiley, New York, 1955).

    MATH  Google Scholar 

  85. G. Porod, Acta Phys. Austriaca 2, 255 (1948).

    Google Scholar 

  86. O. Kratky and G. Porod, J. Colloid Sci. 4, 35 (1949).

    Article  Google Scholar 

  87. M. Trau, D. A. Saville, and I. A. Aksay, Langmuir 13 (24), 6375 (1997). https://doi.org/10.1021/la970568u

    Article  Google Scholar 

  88. W. D. Ristenpart, I. A. Aksay, and D. A. Saville, Phys. Rev. Lett. 90 (12), 128303 (2003). https://doi.org/10.1103/PhysRevLett.90.128303

    Article  ADS  Google Scholar 

  89. A. Yethiraj, A. Wouterse, B. Groh, and A. van Blaaderen, Phys. Rev. Lett. 92 (5), 058301 (2004). https://doi.org/10.1103/PhysRevLett.92.058301

    Article  ADS  Google Scholar 

  90. W. Loose and B. J. Ackerson, J. Chem. Phys. 101 (9), 7211 (1994). https://doi.org/10.1063/1.468278

    Article  ADS  Google Scholar 

  91. M. Kobas, T. Weber, and W. Steurer, Phys. Rev. B 71 (22), 224205 (2005). https://doi.org/10.1103/PhysRevB.71.224205

    Article  ADS  Google Scholar 

  92. T. R. Welberry, Diffuse X-ray Scattering and Models of Disorder (Oxford Univ. Press, Oxford, 2004).

    Google Scholar 

  93. H. Versmold, Phys. Rev. Lett. 75 (4), 763 (1995). https://doi.org/10.1103/PhysRevLett.75.763

    Article  ADS  Google Scholar 

  94. A. J. C. Wilson, Proc. Roy. Soc. London A 180, 277 (1941).

    ADS  Google Scholar 

  95. I. I. Novikov, Defects of the Crystalline Structure of Metals (Metallurgiya, Moscow, 1975) [in Russian].

    Google Scholar 

  96. A. I. Akhiezer and I. Ya. Pomeranchuk, Certain Problems of Nuclear Theory (Gostekhizdat, Moscow, 1950) [in Russian].

    Google Scholar 

  97. Y. Toyozawa, Progr. Theor. Phys. 20 (1), 53 (1958).

    Article  ADS  Google Scholar 

  98. Yu. A. Izyumov, Fiz. Met. Metalloved. 11 (5), 801 (1961).

    Google Scholar 

  99. Yu. A. Izyumov, Usp. Fiz. Nauk 80 (1), 41 (1963).

    Article  Google Scholar 

  100. E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge Univ. Press, Cambridge, 1935; Inostrannaya Literatura, Moscow, 1949).

  101. G. T. Trammell, Phys. Rev. 92, 1387 (1953).

    Article  ADS  Google Scholar 

  102. S. V. Maleev, Zh. Eksp. Teor. Fiz. 40 (4), 1224 (1961).

    Google Scholar 

  103. O. Halpern and M. H. Jonson, Phys. Rev. 55, 898 (1939).

    Article  ADS  Google Scholar 

  104. A. W. Saenz, Phys. Rev. 119, 1542 (1960).

    Article  ADS  Google Scholar 

  105. S. V. Grigor’ev, N. A. Grigor’eva, A. V. Syromyatnikov, et al., JETP Lett. 85 (9), 449 (2007). https://doi.org/10.1134/S0021364007090081

    Article  ADS  Google Scholar 

  106. S. Muhlbauer, A. Heinemann, A. Wilhelm, et al., Nucl. Instrum. Methods Phys. Res. A 832, 297 (2016). https://doi.org/10.1016/j.nima.2016.06.105

    Article  ADS  Google Scholar 

  107. C. D. Dewhurst, I. Grillo, D. Honecker, et al., J. Appl. Crystallogr. 49, 1 (2016). https://doi.org/10.1107/S1600576715021792

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are deeply grateful to all co-authors of the papers that were reviewed:

N.A. Sapoletov, K.S. Napol’skii, Andrei A. Eliseev, Artem A. Eliseev, A.S. Sinitskii, V.V. Abramov, A.V. Lukashin (staff and students of the Faculty of Materials Science of Moscow State University), A.K. Samusev, I.S. Sinev, K.B. Samusev, M.V. Rybin, M.F. Limonov, E.Yu. Trofimov, D.A. Kurdyukov, and V.G. Golubev (Ioffe Institute, Russian Academy of Sciences) for the preparation of the samples, participation in experiments, and fruitful discussions;

A.V. Petukhov, D.V. Belov, J. Hilhorst (Eindhoven University of Technology, the Netherlands), and W.G. Bouwman (Reactor of the Delft University of Technology, the Netherlands) for the participation in experiments and fruitful discussions;

D.Yu. Chernyshov and K. Kvashnina (BM-01 and DUBBLE, respectively; European Synchrotron Radiation Facility, ESRF, France), H. Eckerlebe (SANS-2, Helmholtz-Zentrum Geesthacht, Germany), D. Menzel (Technische Universität Braunschweig, Germany), A. Heinemann (SANS-1, Forschungsreaktor Technische Universität München (FRM-II), Germany), A. Vorob’ev and D. Honnecker (SuperAdam and small-angle neutron scattering instrument D33, respectively; Institut Laue–Langevin (ILL), France) for the provided experimental time at the research facilities and help in carrying out experiments;

I.S. Shishkin, I.S. Dubitskii, and G.A. Val’kovskii (staff and postgraduates of St. Petersburg State University) and А. Vasil’eva (Petersburg Nuclear Physics Institute) for processing experimental data, help in carrying out experiments, and discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Grigoryeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoryeva, N.A., Mistonov, A.A. & Grigoriev, S.V. Small-Angle Neutron Diffraction for Studying Ferromagnetic Inverse Opal-Like Structures. Crystallogr. Rep. 67, 93–117 (2022). https://doi.org/10.1134/S1063774522010060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522010060

Navigation