Skip to main content
Log in

Crystal Structure of the Brugia malayi Thymidylate Kinase-dTMP Complex and Small Angle X-ray Scattering Experiments Identifies Changes in the Dimeric Association Compared to the Human Homolog

  • STRUCTURE OF MACROMOLECULAR COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract—

Lymphatic filariasis is a serious parasitic disease spread by mosquitoes and affects the lymphatic system resulting in abnormal enlargement of body parts. It is caused by three related nematodes, one of which is Brugia malayi. Thymidylate kinase (TMK) is the principal enzyme involved in nucleic acid metabolism. It synthesizes pyrimidine by catalyzing the phosphorylation of thymidine-5'-monophosphate (dTMP) to form thymidine-5'-diphosphate (dTDP) in the presence of Mg2+ and ATP. Hence TMK could be an attractive drug target to develop new anti-filarials. Here, we report the crystal structure of dTMP substrate bound Brugia malayi thymidylate kinase (BmTMK) to 1.91 Å resolution. The structure adopts the classic α/β fold like P-loop NTPases with core and Nucleotide binding domains. A comparison with the human homolog shows several differences in the TMK binding site and also in the dimeric association. Small-angle X-ray scattering (SAXS) experiments support the differences in the dimeric association between BmTMK and its human counterpart. The differences in the active site architecture can possibly be exploited to develop BmTMK specific inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. C. A. S. Elizabeth, A. Cromwell, Kevin T. Kwong, et al., Lancet Glob. Health 8, e1186 (2020).

  2. L. S. Lee and Y. Cheng, J. Biol. Chem. 252, 5686 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. M. P. Sandrini, A. R. Clausen, S. L. On, F. M. Aarestrup, B. Munch-Petersen, and J. Piskur, J. Antimicrob. Chemother 60, 510 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. E. Fioravanti, A. Haouz, T. Ursby, H. Munier-Lehmann, M. Delarue, and D. Bourgeois, J. Mol. Biol. 327, 1077 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. D. Topalis, B. Collinet, C. Gasse, L. Dugué, J. Balzarini, S. Pochet, and D. Deville-Bonne, Febs J. 272, 6254 (2005).

  6. L. C. Owono Owono, M. Keita, E. Megnassan, V. Frecer, and S. Miertus, Tuberc. Res. Treat. 2013, 670836 (2013).

  7. S. Sukumar, A. Krishman, and M. K. A. Khan, Front. Biosci. 25, 1636 (2020).

    Article  CAS  Google Scholar 

  8. I. Li de la Sierra, H. Munier-Lehmann, A. M. Gilles, O. Bârzu, and M. Delarue, J. Mol. Biol. 311, 87 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. P. Liang, L. Averboukh, W. Zhu, T. Haley, and A. B. Pardee, Cell Growth Differ. 6, 1333 (1995).

    CAS  PubMed  Google Scholar 

  10. N. Ostermann, I. Schlichting, R. Brundiers, M. Konrad, J. Reinstein, T. Veit, R. S. Goody, and A. Lavie, Structure 8, 629 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. R. E. Anderson, J. Mark. Res. 10, 38 (1973).

    Article  Google Scholar 

  12. J. Y. Su and R. A. Sclafani, Nucl. Acids Res. 19, 823 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Lavie, I. R. Vetter, M. Konrad, R. S. Goody, J. Reinstein, and I. Schlichting, Nat. Struct. Biol. 4, 601 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. A. Lavie, N. Ostermann, R. Brundiers, R. S. Goody, J. Reinstein, M. Konrad, and I. Schlichting, PNAS 95, 14045 (1998).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. N. Ostermann, A. Lavie, S. Padiyar, R. Brundiers, T. Veit, J. Reinstein, R. S. Goody, M. Konrad, and I. Schlichting, J. Med. Biol. 304, 43 (2000).

    CAS  Google Scholar 

  16. M. Kotaka, B. Dhaliwal, J. Ren, C. E. Nichols, R. Angell, M. Lockyer, A. R. Hawkins, and D. K. Stammers, Protein Sci. 15, 774 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. C. Caillat, D. Topalis, L. A. Agrofoglio, S. Pochet, J. Balzarini, D. Deville-Bonne, and P. Meyer, PNAS 105, 16900 (2008).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. G. Martínez-Botella, J. N. Breen, J. E. Duffy, J. Dumas, B. Geng, I. K. Gowers, O. M. Green, S. Guler, M. F. Hentemann, F. A. Hernandez-Juan, D. Joseph-McCarthy, S. Kawatkar, N. A. Larsen, O. Lazari, J. T. Loch, J. A. Macritchie, A. R. McKenzie, J. V. Newman, N. B. Olivier, L. G. Otterson, A. P. Owens, J. Read, D. W. Sheppard, and T. A. Keating, J. Med. Chem. 55, 10010 (2012).

    Article  PubMed  Google Scholar 

  19. J. L. Whittingham, J. Carrero-Lerida, J. A. Brannigan, L. M. Ruiz-Perez, A. P. Silva, M. J. Fogg, A. J. Wilkinson, I. H. Gilbert, K. S. Wilson, and D. González-Pacanowska, Biochem. J. 428, 499 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. M. Saraste, P. R. Sibbald, and A. Wittinghofer, Trends Biochem. Sci. 15, 430 (1990).

    Article  PubMed  Google Scholar 

  21. P. K. Doharey, M. K. Suthar, A. Verma, V. Kumar, S. Yadav, V. M. Balaramnavar, S. Rathaur, A. K. Saxena, M. I. Siddiqi, and J. K. Saxena, Acta Trop. 133, 83 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. P. K. Doharey, S. K. Singh, P. Verma, A. Verma, S. Rathaur, and J. K. Saxena, Int. J. Biol. Macromol. 88, 565 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, J. Comput. Chem. 25, 1605 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. D. Liebschner, P. V. Afonine, M. L. Baker, G. Bunkoczi, V. B. Chen, T. I. Croll, B. Hintze, L.-W. Hung, S. Jain, A. J. McCoy, N. W. Moriarty, R. D. Oeffner, B. K. Poon, M. G. Prisant, R. J. Read, J. S. Richardson, D. C. Richardson, M. D. Sammito, O. V. Sobolev, D. H. Stockwell, T. C. Terwilliger, A. G. Urzhumtsev, L. L. Videau, C. J. Williams, and P. D. Adams, Acta Crysatallogr., Sect D: Struct. Biol. 75, 861 (2019).

    CAS  Google Scholar 

  25. P. Emsley and K. Cowtan, Acta Crysatallogr. D: Struct. Biol. 60, 2126 (2004).

    Article  ADS  Google Scholar 

  26. P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Acta Crysatallogr., Sect D: Struct. Biol. 66, 486 (2010).

    Article  CAS  Google Scholar 

  27. R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thornton, J. Appl. Crystallogr. 26, 283 (1993).

    Article  CAS  ADS  Google Scholar 

  28. B. Webb and A. Sali, Curr. Protoc. Bioinformatics 54, 5.6.1 (2016).

  29. A. Vangone, R. Spinelli, V. Scarano, L. Cavallo, and R. Oliva, Oncotarget 27, 2915 (2011).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Brugia malayi thymidylate kinase cloned in pET28a expression vector was received as a kind gift from Dr. Saxena, CSIR-Central Drug Research Institute, Lucknow.

Funding

The project was supported by a grant from Council of Scientific and Industrial Research, India with no. BSC0104. The manuscript has a CSIR-CDRI communication no. 141/2021/RR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Vishwakarma, V. K. Sharma or R. Ramachandran.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

DATA SUBMISSION

The SAXS generated data was submitted to SASBDB as SASDKU9 while crystals structure coordinates were submitted to the Protein data bank with PDB ID: 7FGQ.

Original amino acids sequence of BmTMK MGSRIRGAFIVFEGCDRAGKSLQSRKLVERIKAAGGDVDLISFPDRSSDLGKFIDRYLKKEVEMDPKEAHLVFAANRQALMPLMMKKLLKGTHLVVDRYAYSGIAYTLAKGADNITMEWAKLADMGELRPDCVIYFNLSFEEAQKRSGFGDERFDFGNFQGKVSKVMEQLADEDRDLWKVVDASLTVEEISENVWNLVAPILDNVSRKSL.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwakarma, J., Sharma, V.K., Kumar, S. et al. Crystal Structure of the Brugia malayi Thymidylate Kinase-dTMP Complex and Small Angle X-ray Scattering Experiments Identifies Changes in the Dimeric Association Compared to the Human Homolog. Crystallogr. Rep. 68, 1150–1158 (2023). https://doi.org/10.1134/S1063774521100400

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521100400

Navigation