Skip to main content
Log in

Nanocomposites Based on Poly(Amide-Imide) Matrix with Na–Mg Triple Chain Hydrosilicate

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A new polymer-inorganic nanocomposite composed of fibrous Na–Mg triple chain hydrosilicate with a poly(amide-imide) matrix was developed. Its structure, morphology, and dynamic mechanical properties were studied. Stability and high values of mechanical characteristics were shown in a wide temperature range from –150 to 300°C for both the polymer and a composite based on it. The introduction of the fibrous hydrosilicate nanofiller led to a structuring of the polymer matrix and a change from an amorphous state to an ordered mesomorphic state. A comparative analysis of the free and cryo-fracture surface morphologies of the polymer films and composites was carried out. A model of the structure of the polymer matrix with a network of hydrogen bonds, the density of which depends on the reduced viscosity of the casting solution, was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. D. R. Paul and L. M. Robeson, Polym. Nanotechnol.: Nanocompos. Polym. 49, 3187 (2008). https://doi.org/10.1016/j.polymer.2008.04.017

    Article  Google Scholar 

  2. L. A. Baker, P. Jin, and C. R. Martin, Crit. Rev. Mater. Sci. 30, 183 (2005). https://doi.org/10.1080/10408430500198169

    Article  Google Scholar 

  3. L. A. Baker and C. R. Martin, Nanobiotechnology. Bioinspired Devices and Materials of the Future, Ed. by O. Shoseyov and I. Levy (Humana, UK, 2008).

    Google Scholar 

  4. R. V. Tal’roze, G. A. Shandryuk, A. S. Merekalov, et al., Polym. Sci. 51, 1194 (2009). https://doi.org/10.1134/S0965545X09110030

    Article  Google Scholar 

  5. P. K. Guchhait, A. Ray, and S. Maiti, J. Macromol. Sci. B 20, 93 (1983).

    Article  Google Scholar 

  6. R. K. Agnihotri, Polym. Eng. Sci. 17, 366 (1977). https://doi.org/10.1002/pen.760170607

    Article  Google Scholar 

  7. M. Bruma, I. Sava, W. H. Daly, et al., J. Macromol. Sci. A 30, 789 (1993). https://doi.org/10.1080/10601329308009589

    Article  Google Scholar 

  8. V. A. Gusinskaya, M. M. Koton, T. V. Batrakova, et al., Polym. Sci. U.S.S.R. 18, 268 (1976).

    Article  Google Scholar 

  9. K. Y. Choi and M. H. Yi, Angew. Macromol. Chem. 222 (1994). https://doi.org/10.1002/apmc.1994.052220108

  10. Y. Wang, T. S. Chung, H. Wang, et al., Chem. Eng. Sci. 64, 5198 (2009). https://doi.org/10.1016/j.ces.2009.08.034

    Article  Google Scholar 

  11. S. V. Kononova, Yu. P. Kuznetsov, R. Apostel, et al., Angew. Macromol. Chem. 237, 45 (1996).

    Article  Google Scholar 

  12. S. V. Kononova, G. N. Gubanova, E. N. Korytkova, et al., Polym. Nanocompos. Membr., Appl. Sci. 8 (7), 1181 (2018). https://doi.org/10.3390/app8071181

    Article  Google Scholar 

  13. E. N. Korytkova, A. V. Maslov, L. N. Pivovarova, et al., Glass Phys. Chem. 30, 51 (2004). https://doi.org/10.1023/B:GPAC.0000016397.29132.21

    Article  Google Scholar 

  14. E. N. Korytkova, A. V. Maslov, L. N. Pivovarova, et al., Inorg. Mater. 41, 743 (2005). https://doi.org/10.1007/s10789-005-0202-1

    Article  Google Scholar 

  15. E. N. Korytkova and L. N. Pivovarova, Glass Phys. Chem. 36, 53 (2010). https://doi.org/10.1134/S1087659610010104

    Article  Google Scholar 

  16. S. A. Chivilikhin, I. Yu. Popov, I. Blinova, et al., Glass Phys. Chem. 33, 315 (2007). https://doi.org/10.1134/S1087659607040037

    Article  Google Scholar 

  17. V. E. Yudin, J. U. Otaigbe, S. V. Gladchenko, et al., Polymer 48, 1306 (2007). https://doi.org/10.1016/j.polymer.2007.01.012

    Article  Google Scholar 

  18. S. V. Kononova, E. N. Korytkova, K. A. Romashkova, et al., Russ. J. Appl. Chem. 80, 2142 (2007). https://doi.org/10.1134/S1070427207120297

    Article  Google Scholar 

  19. S. V. Kononova, K. A. Romashkova, E. V. Kruchinina, et al., Russ. J. Gen. Chem. 80, 1136 (2010). https://doi.org/10.1134/S1070363210060162

    Article  Google Scholar 

  20. G. N. Gubanova, S. V. Kononova, M. E. Vylegzhanina, et al., Russ. J. Appl. Chem. 83, 2175 (2010). https://doi.org/10.1134/S1070427210120207

    Article  Google Scholar 

  21. G. N. Gubanova, S. V. Kononova, S. V. Bronnikov, et al., J. Macromol. Sci. B 53 (2014). https://doi.org/10.1080/00222348.2013.847399

  22. V. A. Dritz, Yu. I. Goncharov, V. A. Aleksandrova, et al., Sov. Phys. Crystallogr. 19, 1186 (1974).

    Google Scholar 

  23. H. Tateyama, S. Shimoda, and T. Sudo, Contrib. Miner. Petrol. 66, 149 (1978).

    Article  ADS  Google Scholar 

  24. E. N. Korytkova, L. N. Pivovarova, R. G. Grebenshchikov, et al., Geochem. Int. 35, 620 (1997).

    Google Scholar 

  25. G. N. Gubanova, S. V. Kononova, M. Cristea, et al., Russ. J. Gen. Chem. 85, 1496 (2015). https://doi.org/10.1134/S1070363215060249

    Article  Google Scholar 

  26. S. V. Kononova, G. N. Gubanova, E. V. Kruchinina, et al., Glass Phys. Chem. 43, 181 (2017). https://doi.org/10.1134/S1087659617020079

    Article  Google Scholar 

  27. E. N. Korytkova, V. A. Dritz, and V. I. Cherkashin, Trans. (Doklady) USSR Acad. Sci.: Earth Sci. 285, 80 (1986).

    Google Scholar 

  28. S. V. Kononova, G. N. Gubanova, E. N. Korytkova, et al., Scanning Probe Microscopy: Physical Property Characterization at Nanoscale, Ed. by N. Vijay (Rijeka: InTech, Croatia, 2011), p. 81. https://doi.org/10.5772/2653

  29. Yu. G. Baklagina, A. V. Sidorovich, I. Urban, et al., Polym. Sci. B 31, 38 (1989).

    Google Scholar 

  30. V. Freger, J. Gilron, and S. Belfer, J. Membr. Sci. 209, 283 (2002). https://doi.org/10.1016/S0376-7388(02)00356-3

    Article  Google Scholar 

  31. S. V. Bronnikov and T. E. Sukhanova, Chem. Chem. Phys. 5, 4252 (2003).

    Article  Google Scholar 

  32. V. K. Lavrent’ev and A. V. Sidorovich, Polym. Sci. B 3 (1984).

  33. C. Bass, C. Tamagna, T. Pascal, et al., Polym. Eng. Sci. 43, 344 (2003). https://doi.org/10.1002/pen.10029

    Article  Google Scholar 

  34. E. Pinel, M.-F. Barthe, and J. Baerdemaeker, J. Polym. Sci. B 4, 3139 (2003). https://doi.org/10.1002/polb.10630

    Article  Google Scholar 

  35. S.-H. Huang, C. C. Hu, and K. R. Lee, Eur. Polym. J. 42, 140 (2006). https://doi.org/10.1016/j.eurpolymj.2005.06.032

    Article  Google Scholar 

  36. C. Y.-C. Lee and I. J. Goldfarb, Polym. Eng. Sci. 21, 951 (1981). https://doi.org/10.1002/pen.760211414

    Article  Google Scholar 

  37. M. Cristea, D. Ionita, and B. C. Simionescu, Eur. Polym. J. 46, 2005 (2010). https://doi.org/10.1002/app.42834

    Article  Google Scholar 

  38. M. Cristea, D. Ionita, C. Hulubei, et al. Polymer 52, 1820 (2011). https://doi.org/10.1016/j.polymer.2011.02.026

    Article  Google Scholar 

  39. M. Cristea, D. Ionita, F. Doroftei, et al., J. Mech. Behav. Biomed. Mater. 17, 317 (2013). https://doi.org/10.1016/j.jmbbm.2012.10.004

    Article  Google Scholar 

  40. W. Stark, Polym. Test. 32, 231 (2013). https://doi.org/10.1016/j.polymertesting.2012.11.004

    Article  Google Scholar 

  41. S. V. Kononova, G. N. Gubanova, K. A. Romashkova, et al., Polym. Sci. A 58, 419 (2016). https://doi.org/10.1134/S0965545X16030111

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Higher Education of the Russian Federation and was performed owing to cooperation between the Institute of Macromolecular Compounds of the Russian Academy of Sciences and the “Petru Poni” Institute of Macromolecular Chemistry of the Romanian Academy of Sciences (program of collaboration “Multifunctional polymers and nanocomposites”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Gubanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubanova, G.N., Timpu, D., Cristea, M. et al. Nanocomposites Based on Poly(Amide-Imide) Matrix with Na–Mg Triple Chain Hydrosilicate. Crystallogr. Rep. 66, 1185–1199 (2021). https://doi.org/10.1134/S1063774521070063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521070063

Navigation