Skip to main content
Log in

Three-Dimensional Structure of Thermostable D-Amino Acid Transaminase from the Archaeon Methanocaldococcus jannaschii DSM 2661

Crystallography Reports Aims and scope Submit manuscript

Cite this article


Pyridoxal 5′-phosphate (PLP)-dependent transaminases catalyze the stereospecific amino-group transfer from an amino acid or amine to ketone or keto acid. Transaminases are involved in amino acid metabolism in all organisms. Enzymes of this superfamily are widely used to develop biocatalysts for the stereoselective amination of organic compounds for fine organic synthesis. The brief biochemical characterization of thermostable fold type I PLP-dependent transaminase from the thermophilic archaeon Methanocaldococcus jannaschii DSM 2661 is reported. The crystal structure of this enzyme was determined at 1.8 Å resolution. The structure of the functional dimer of the enzyme and the organization of its active site are compared with those of the close homologs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others


  1. E. Y. Bezsudnova, K. M. Boyko, and V. O. Popov, Biochemistry (Moscow) 82, 1572 (2017).

    Article  Google Scholar 

  2. M. Fuchs, J. E. Farnberger, and W. Kroutil, Eur. J. Org. Chem. 2015, 6965 (2015).

    Article  Google Scholar 

  3. F. Guo and P. Berglund, Green Chem. 19, 333 (2017).

    Article  Google Scholar 

  4. I. Slabu, J. L. Galman, N. J. Turner, et al., Acs. Catalysis 7, 8263 (2017).

    Article  Google Scholar 

  5. F. Steffen-Munsberg, C. Vickers, H. Kohls, et al., Biotechnol. Adv. 33, 566 (2015).

    Article  Google Scholar 

  6. S. Wu, R. Snajdrova, J. C. Moore, et al., Angew. Chem. Int. Ed. Engl. 60 (1), 88 (2020).

    Article  Google Scholar 

  7. N. V. Grishin, M. A. Phillips, and E. J. Goldsmith, Protein Sci. 4, 1291 (1995).

    Article  Google Scholar 

  8. E. Y. Bezsudnova, V. O. Popov, and K. M. Boyko, Appl. Microbiol. Biotechnol. 104, 2343 (2020).

    Article  Google Scholar 

  9. K. Hult and P. Berglund, Trends Biotechnol. 25, 231 (2007).

    Article  Google Scholar 

  10. U. Kaulmann, K. Smithies, M. E. B. Smith, et al., Enzyme Microbial Technol. 41, 628 (2007).

    Article  Google Scholar 

  11. F. Steffen-Munsberg, P. Matzel, M. A. Sowa, et al., Appl. Microbiol. Biotechnol. 100, 4511 (2016).

    Article  Google Scholar 

  12. G. L. Stoner and M. A. Eisenberg, J. Biol. Chem. 250, 4037 (1975).

    Article  Google Scholar 

  13. D. Cobessi, R. Dumas, V. Pautre, et al., Plant Cell. 24, 1608 (2012).

    Article  Google Scholar 

  14. S. Mann and O. Ploux, Febs J. 273, 4778 (2006).

  15. E. Y. Bezsudnova, T. N. Stekhanova, A. V. Popinako, et al., Appl. Microbiol. Biotechnol. 102, 9621 (2018).

    Article  Google Scholar 

  16. C. J. Bult, O. White, G. J. Olsen, et al., Science 273, 1058 (1996).

    Article  ADS  Google Scholar 

  17. K. Boyko, M. Gorbacheva, T. Rakitina, et al., Acta Crystallogr. F. 71, 24 (2015).

    Article  Google Scholar 

  18. K. M. Boyko, A. V. Lipkin, V. O. Popov, et al., Crystallogr. Rep. 58, 442 (2013).

    Article  ADS  Google Scholar 

  19. G. P. Bourenkov and A. N. Popov, Acta Crystallogr. D 62, 58 (2006).

    Article  Google Scholar 

  20. T. G. Battye, L. Kontogiannis, O. Johnson, et al., Acta Crystallogr. D 67, 271 (2011).

    Article  Google Scholar 

  21. A. A. Vagin and M. N. Isupov, Acta Crystallogr. D 57, 1451 (2001).

    Article  Google Scholar 

  22. A. A. Vagin, R. A. Steiner, A. A. Lebedev, et al., Acta Crystallogr. D 60, 2184 (2004).

    Article  Google Scholar 

  23. P. Emsley, B. Lohkamp, W. G. Scott, et al., Acta Crystallogr. D 66, 486 (2010).

    Article  Google Scholar 

  24. S. Dey, J. M. Lane, R. E. Lee, et al., Biochemistry 49, 6746 (2010).

    Article  Google Scholar 

  25. S. Kwon, J. H. Lee, C. M. Kim, et al., Sci. Rep. 9, 6958 (2019).

    Article  ADS  Google Scholar 

  26. Padrosa. D. Roura, R. Alaux, P. Smith, et al., Front Bioeng Biotechnol. 7, 282 (2019).

Download references


The study was supported by the Russian Science Foundation (project no. 19-14-00164 supporting the protein expression and isolation), the Russian Federal Space Agency (project of Space experiments (target works) “Kristallizator” supporting the protein crystallization and X-ray diffraction data collection), and the Ministry of Science and Higher Education of the Russian Federation (the structure refinement and analysis of the three-dimensional structure).

Author information

Authors and Affiliations


Corresponding author

Correspondence to K. M. Boyko.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyko, K.M., Nikolaeva, A.Y., Bakunova, A.K. et al. Three-Dimensional Structure of Thermostable D-Amino Acid Transaminase from the Archaeon Methanocaldococcus jannaschii DSM 2661. Crystallogr. Rep. 66, 802–807 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: