Skip to main content
Log in

Electron Microscopy Study of Surface Islands in Epitaxial Ge3Sb2Te6 Layer Grown on a Silicon Substrate

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Islands in the form of truncated triangular pyramids on the surface of an epitaxial Ge3Sb2Te6 layer grown on a Si(111) substrate are identified by scanning electron microscopy. It is established that sides of their bases are oriented along the Si〈110〉 directions, and sizes vary from several tens to several hundred nanometers. It is shown by high-resolution electron microscopy of cross-sectional specimens that the (111) planes of the cubic phase or (0001) planes of the hexagonal phase of Ge3Sb2Te6 in the epitaxial layer are oriented parallel to Si(111) and, in surface domains, can make an angle of 70.5° with the layer–substrate interface. It is established, using an atomic structure analysis and energy-dispersive X-ray microanalysis, that the composition in islands changes from Ge3Sb2Te6 to GeSb2Te4 along the growth direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Redaelli, Phase Change Memory (Springer Int. Publ. AG, 2018).

    Book  Google Scholar 

  2. M. Wuttig and N. Yamada, Nature Mater. 6, 824 (2007).

    Article  ADS  Google Scholar 

  3. T. C. Chong, L. P. Shi, R. Zhao, et al., Appl. Phys. Lett. 88, 122114 (2006).

    Article  ADS  Google Scholar 

  4. J. Momand, R. Wang, J. E. Boschker, et al., Nanoscale 9, 8774 (2017).

    Article  Google Scholar 

  5. A. Koma, Thin Solid Films 216, 72 (1992).

    Article  ADS  Google Scholar 

  6. A. M. Mio, S. M. S. Privitera, V. Bragaglia, et al., Nano-technology 28, 065706 (2017).

    ADS  Google Scholar 

  7. V. Bragaglia, F. Arciprete, W. Zhang, et al., Sci. Rep. 6, 23843 (2016).

    Article  ADS  Google Scholar 

  8. Y. Zheng, Y. Cheng, R. Huang, et al., Sci. Rep. 7, 5915 (2017).

    Article  ADS  Google Scholar 

  9. A. Lotnyk, T. Dankwort, I. Hilmi, et al., Nanoscale 11, 10838 (2019).

    Article  Google Scholar 

  10. B. J. Kooi, W. M. G. Groot, and J. Th. M. De Hosson, J. Appl. Phys. 95 (3), 924 (2004).

    Article  ADS  Google Scholar 

  11. Y. J. Park, J. Y. Lee, and Y. T. Kim, Appl. Surf. Sci. 253, 714 (2006).

    Article  ADS  Google Scholar 

  12. J. E. Boschker and R. Calarco, Adv. Phys. X 2 (3), 675 (2017).

    Google Scholar 

  13. M. Schuck, S. Ries, M. Schreiber, et al., J. Cryst. Growth 420, 37 (2015).

    Article  ADS  Google Scholar 

  14. I. Hilmi, E. Thelander, P. Schumacher, et al., Thin Solid Films 619, 81 (2016).

    Article  ADS  Google Scholar 

  15. J. E. Boschker, L. A. Galves, T. Flissikowski, et al., Sci. Rep. 5, 18079 (2015).

    Article  ADS  Google Scholar 

  16. R. Wang, J. E. Boschker, E. Bruyer, et al., J. Phys. Chem. C 118, 29724 (2014).

    Article  Google Scholar 

  17. Y. Liu, M. Weinert, and L. Li, Phys. Rev. Lett. 108, 115501 (2012).

    Article  ADS  Google Scholar 

  18. H. Zogg, S. Blunier, A. Fach, et al., Phys. Rev. B 50, 10801 (1994).

    Article  ADS  Google Scholar 

  19. Y. Takagaki, A. Giussani, K. Perumal, et al., Phys. Rev. B 86, 125137 (2012).

    Article  ADS  Google Scholar 

  20. S. Andrieu, J. Appl. Phys. 69, 1366 (1991).

    Article  ADS  Google Scholar 

  21. E. Zallo, S. Cecchi, J. E. Boschker, et al., Sci. Rep. 7, 1466 (2017).

    Article  ADS  Google Scholar 

  22. J. Mayer, L. A. Giannuzzi, and T. Kamino, MRS Bull. 32, 400 (2007).

    Article  Google Scholar 

  23. R. L. Volkov, N. I. Borgardt, V. N. Kukin, et al., Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. 9, 94 (2011).

    Google Scholar 

  24. Y. J. Park, J. Y. Lee, and Y. T. Kim, Appl. Surf. Sci. 252, 8102 (2006).

    Article  ADS  Google Scholar 

  25. J. Wang, Y. Xu, R. Mazzarello, et al., Materials 10 (8), 862 (2017).

    Article  ADS  Google Scholar 

  26. T. Rosenthal, S. Welzmiller, L. Neudert, et al., J. Solid State Chem. 219, 108 (2014).

    Article  ADS  Google Scholar 

  27. B. Zhang, W. Zhang, Z. Shen, et al., Appl. Phys. Lett. 108, 191902 (2016).

    Article  ADS  Google Scholar 

  28. W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. 243, 299 (1951).

    ADS  Google Scholar 

  29. Yu. S. Zybina, N. I. Borgardt, P. I. Lazarenko, et al., Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. 10, 82 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed on the equipment of the Collective-Use Center “Diagnostics and Modification of Microstructures and Nanoobjects”.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (subject AAAA-A20-120071490069-9, agreement no. 075-03-2020-216, code 0719-2020-0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Zaytseva.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaytseva, Y.S., Borgardt, N.I., Prikhodko, A.S. et al. Electron Microscopy Study of Surface Islands in Epitaxial Ge3Sb2Te6 Layer Grown on a Silicon Substrate. Crystallogr. Rep. 66, 687–693 (2021). https://doi.org/10.1134/S1063774521030317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521030317

Navigation